Answer:
g = 0.4 m/s²
Explanation:
Given the following data;
Height = 5 meters
Time = 5 seconds
To find the acceleration due to gravity (g) on the planet;
Mathematically, the maximum height of an object is given by the formula;
H = ½gt²
Where;
H is the height measured in meters.
g is the acceleration due to gravity.
t is time measured in seconds.
Substituting into the formula, we have;
5 = ½ * g * 5²
5 = 0.5 * g * 25
5 = 12.5 * g
g = 5/12.5
g = 0.4 m/s²
Answer:
electric flux through the three side = 2.35 N m²/C
Explanation:
given,
equilateral triangle of base = 25 cm
electric field strength = 260 N/C
Area of triangle = 
= 
= 0.0271 m³
electric flux = E. A
= 260 × 0.0271
= 7.046 N m²/C
since, tetrahedron does not enclose any charge so, net flux through tetrahedron is zero.
electric flux through the three side = (electric flux through base)/3
= 
electric flux through the three side = 2.35 N m²/C
<span>When the delta brainwave frequencies increase into the frequency of theta brainwaves,
active dreaming takes place and often becomes more experiential to the
person. Typically, when this occurs there is rapid eye movement, which
is characteristic of active dreaming. This is called REM, and is a well
known phenomenon.. Hope that helps!</span>
Formula for kinetic energy of an object:
KE = 0.5mv²
m is the mass and v is the velocity.
Formula for the work done on a charged object by moving it through a potential difference:
W = ΔVq
ΔV is the potential difference and q is the charge of the object.
To find the potential difference needed to decelerate an electron to rest, set the work done on the electron equal to its kinetic energy:
W = KE
Substitute W = ΔVq and KE = 0.5mv²
ΔVq = 0.5mv²
Given values:
q = 1.6×10⁻¹⁹C
m = 9.11×10⁻³¹kg
v = 6.0m/s
Plug in the given values and solve for ΔV
ΔV×1.6×10⁻¹⁹ = 0.5×9.11×10⁻³¹×6.0²
ΔV = 1.02×10⁻¹⁰V