Answer:
(9, 9)
Step-by-step explanation:
midpoint of (-4,15) and (22,3)
![= \bigg( \frac{ - 4 + 22}{2}, \: \: \frac{15 + 3}{2} \bigg) \\ \\ = \bigg( \frac{18}{2}, \: \: \frac{18}{2} \bigg) \\ \\ = ( 9, \: \: 9) \\ \\](https://tex.z-dn.net/?f=%20%3D%20%20%5Cbigg%28%20%5Cfrac%7B%20-%204%20%2B%2022%7D%7B2%7D%2C%20%5C%3A%20%20%5C%3A%20%20%5Cfrac%7B15%20%2B%203%7D%7B2%7D%20%20%5Cbigg%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cbigg%28%20%5Cfrac%7B18%7D%7B2%7D%2C%20%20%5C%3A%20%20%5C%3A%20%20%5Cfrac%7B18%7D%7B2%7D%20%20%5Cbigg%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%28%209%2C%20%20%5C%3A%20%20%5C%3A%20%209%29%20%5C%5C%20%20%5C%5C%20)
$6469.177
I could be wrong but I'm pretty sure that is right.
Answer:
k is an acute angle
L is a right angle
J is a acute angle
Step-by-step explanation:
Let k be the scale factor relating two similar prisms
![P_{1}](https://tex.z-dn.net/?f=%20P_%7B1%7D%20%20)
and
![P_{2}](https://tex.z-dn.net/?f=%20P_%7B2%7D%20)
, such that for corresponding parts of prisms
![P_{1}](https://tex.z-dn.net/?f=%20P_%7B1%7D%20%20)
and
![P_{2}](https://tex.z-dn.net/?f=%20P_%7B2%7D%20)
(for heights, in particular) we have
![k= \frac{height\ of \ P_{1} }{height \ of\ P_{2} }](https://tex.z-dn.net/?f=k%3D%20%5Cfrac%7Bheight%5C%20%20of%20%5C%20P_%7B1%7D%20%7D%7Bheight%20%5C%20of%5C%20%20P_%7B2%7D%20%7D%20%20)
. In our case
![k= \frac{4}{10} = \frac{2}{5}](https://tex.z-dn.net/?f=k%3D%20%5Cfrac%7B4%7D%7B10%7D%20%3D%20%5Cfrac%7B2%7D%7B5%7D%20)
.
For surfaces area we have
![\frac{Surface \ area \ of \ P_{1} }{Surface \ area \ of \ P_{2}} = k^{2} =( \frac{2}{5} )^{2}= \frac{4}{25}](https://tex.z-dn.net/?f=%20%5Cfrac%7BSurface%20%5C%20area%20%5C%20of%20%5C%20%20P_%7B1%7D%20%7D%7BSurface%20%5C%20area%20%5C%20of%20%5C%20%20P_%7B2%7D%7D%20%3D%20k%5E%7B2%7D%20%3D%28%20%5Cfrac%7B2%7D%7B5%7D%20%29%5E%7B2%7D%3D%20%5Cfrac%7B4%7D%7B25%7D%20)
.
So, the right answer is 4:25 (choice B)
Answer:
$18.60 as well
Step-by-step explanation: