1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
3 years ago
12

Cylindrical hole of radius a is bored through a sphere of radius 2a. the surface of the hole passes through the center of the sp

here. how much material is removed
Mathematics
1 answer:
r-ruslan [8.4K]3 years ago
6 0

The amount of material removed is the volume of the region within the sphere bounded by the cylinder. Consider a sphere of radius 2a centered at the origin; this sphere has equation


x^2+y^2+z^2=4a^2\iff z^2=4a^2-x^2-y^2


The given cylinder has equation


x^2+y^2=a^2


The volume of the region of interest \mathcal D is given by


\displaystyle\iiint_{\mathcal D}\mathrm dV


Converting to cylindrical coordinates, setting


x=r\cos\theta

y=r\sin\theta

z=\zeta


we have


z^2=4a^2-r^2


and


\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\left|\dfrac{\partial(x,y,z)}{\partial(r,\theta,\zeta)}\right|\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta


\implies\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta


where \dfrac{\partial(x,y,z)}{\partial(r,\theta,\zeta)} is the Jacobian of the transformation from (x,y,z) to (r,\theta,\zeta). The region \mathcal D is described by the set


\left\{(r,\theta,\zeta)\,:\,0\le r\le a\land0\le\theta\le2\pi\land-\sqrt{4a^2-r^2}\le\zeta\le\sqrt{4a^2-r^2}\right\}


The integral is then


\displaystyle\iiint_{\mathcal D}\mathrm dV=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=a}\int_{\zeta=-\sqrt{4a^2-r^2}}^{\zeta=\sqrt{4a^2-r^2}}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta


The integral with respect to \zeta is symmetric about \zeta=0, so we instead compute twice the integral from \zeta=0 to \zeta=\sqrt{4a^2-r^2}, and we can immediately compute the integral with respect to \theta:


=\displaystyle4\pi\int_{r=0}^{r=a}r\sqrt{4a^2-r^2}\,\mathrm dr


Now, let s=4a^2-r^2, so that \mathrm ds=-2r\,\mathrm dr:


=\displaystyle-2\pi\int_{r=0}^{r=a}-2r\sqrt{4a^2-r^2}\,\mathrm dr=-2\pi\int_{s=4a^2}^{s=3a^2}\sqrt s\,\mathrm ds


=-2\pi\cdot\dfrac23s^{3/2}\bigg|_{s=4a^2}^{s=3a^2}


=\dfrac{4\pi}3\left((4a^2)^{3/2}-(3a^2)^{3/2}\right)


=\dfrac{4\pi(8-3^{3/2})a^3}3

You might be interested in
Evaluate the expression w 2 - v + 1 for w = -2 and v = -8.
Aleksandr [31]

Answer:

Is the w2, w(2) or

{w}^{2}

?

If it's w(2) the answer is -4--8+1=-4+8+1=5

if it's w^2 then the answer would be 4--8+1=4+8+1=13

4 0
2 years ago
The Butlers bought a $332,000 house. They made a down payment of 42,000 and took out a mortgage for the rest. Over the course of
Zarrin [17]

Answer:

Step-by-step explanation:

(a)Mortgage = 332000 - 42000 = 290000

15 * 12 = 180 months

Total monthly payments = 180 * 2447.19 =440494.2

Total = 440494.2 + 42000 = 482494.2

(b) Interest = 482494.2 -290000

                 = 192494.2

4 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
What are three main ways in Whitehall organisms interact
Degger [83]

Answer:

http://www.classzone.com/science_book/mls_grade6_FL/540_547.pdf

Step-by-step explanation:


7 0
3 years ago
Bloome’s Flower Shop purchases vases by the caseload. Each case contains 24 vases. On average, 3 vases are usually cracked and c
yan [13]

Answer:

72

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Annie is sledding down a snow-covered hill. She knows that the steeper the hill, the faster her sled will go.A. The amount of sn
    8·2 answers
  • A group of friends ordered 3 burgers and 3 medium fries for a total of $17.55. The price of a burger is .75 more than two times
    6·1 answer
  • What is the slope of the line in the graph?<br>Please hurry!!
    15·2 answers
  • Is the product of two integers positive, negative , or zero ? How can you tell?
    6·1 answer
  • In a computer game, a bird flies at a height of 1,281 feet. At the same time, a fish swims 282 feet below sea level. What is the
    11·2 answers
  • Choose the solution set represented by the following graph.
    13·1 answer
  • What is the value of x?
    5·1 answer
  • Any help? Much appreciated ​
    7·1 answer
  • Please you guys I need help!!!! I'll mark branliest !!!!
    14·1 answer
  • For a test, please and thank you!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!