1
Simplify \frac{1}{2}\imath n(x+3)21ın(x+3) to \frac{\imath n(x+3)}{2}2ın(x+3)
\frac{\imath n(x+3)}{2}-\imath nx=02ın(x+3)−ınx=0
2
Add \imath nxınx to both sides
\frac{\imath n(x+3)}{2}=\imath nx2ın(x+3)=ınx
3
Multiply both sides by 22
\imath n(x+3)=\imath nx\times 2ın(x+3)=ınx×2
4
Regroup terms
\imath n(x+3)=nx\times 2\imathın(x+3)=nx×2ı
5
Cancel \imathı on both sides
n(x+3)=nx\times 2n(x+3)=nx×2
6
Divide both sides by nn
x+3=\frac{nx\times 2}{n}x+3=nnx×2
7
Subtract 33 from both sides
x=\frac{nx\times 2}{n}-3x=nnx×2−3
Answer:
Was the function typed incorrectly? Should it be y =
?
Step-by-step explanation:
Exact form
-3/2
Decimal form
-1.5
Mixed number form
-1 1/2
Answer:
10x=y.
Step-by-step explanation:
10 represents the amount he earns an hour. X represents the number of hours so 10x. 10 times the amount of hours equals y (total amount of money)
Answer:
0.45 repeating (0.4545454545...)
Step-by-step explanation: