Answer:
x+y=-1
Step-by-step explanation:
Answer:
Yes, the shapes are similar. Note, the angles are equivalent and the sides are scales of each other satisfying the requirements for similarly.
Step-by-step explanation:
For a shape to be similar there are two conditions that must be met. (1) Must have equivalent angles (2) Sides must be related by a scalar.
In the two triangles presented, the first condition is met since each triangle has three angles, 90-53-37.
To test if the sides are scalar, each side must be related to a corresponding side of the other triangle with the same scalar.
9/6 = 3/2
12/8 = 3/2
15/10 = 3/2
Alternatively:
6/9 = 2/3
8/12 = 2/3
10/15 = 2/3
Since the relationship of the sides is the scalar 3/2 (Alternatively 2/3), then we can say the triangles meet the second condition.
Given that both conditions are satisfied, then we can say these triangles are similar.
Note, this is a "special case" right triangle commonly referred to as a 3-4-5 right triangle.
Cheers.
Answer: 2
Step-by-step explanation:
Answer:
Any set of data that satisfies the 5-Number summary: 1,6,12,16 and 19 can be represented with the box plot.
Step-by-step explanation:
<u>Interpreting Box Plots</u>
A box plot is used to present the 5-Number summary of a set of data.
The 5-Number summary consists of the following in their order of appearance on the box plot.
- Minimum Value
- First Quartile,

- Median,

- Third Quartile,

- Maximum Value
In the box plot, the following rules applies
- The whisker starts from the minimum value and ends at the first quartile.
- The box starts at the first quartile and ends at the third quartile. There is a vertical line inside the box which shows the median.
- The end whisker starts at the third quartile and ends at the maximum value.
Using these, we interpret the given box plot
A left whisker extends from 1 to 6.
- Minimum Value=1
- First Quartile =6
The box extends from 6 to 16 and is divided into 2 parts by a vertical line segment at 12.
- Median=12
- Thrid Quartile=16
The right whisker extends from 16 to 19.
Therefore any set of data that satisfies the 5-Number summary: 1,6,12,16 and 19 can be represented with the box plot.