Answer:
(b-3)(b+3)
Step-by-step explanation:
b^2+3b-3b-9
Answer: option d. C (0,3), D (0,5).
Justification:
1) The x - coordinates of the vertices A and B are shown in the diagrama, They are both - 4, so the new vertices C and D must be in a line parallel to y = - 4.
2) The y-coordinates of the vertices A and B are also shown in the diagrama. They are equal to 3 and 5 respectively.
3) We can see that the new points C and D must be over a parallel line to y = - 4 and that their distance to the points A and B has to be the same distance of the point R and S to U and T.
That distance is 4, so the line may be y = - 7 or y = 0.
4) If the line is y = 7 the points C and D would have coordinates (-7,3) and (-7,5), but this points are not among the options.
5) If the line is y = 0 the points C and D would have coordinates (0, 3) and (0,5), which is precisely the points of the option d. That is the answer.
I guess this how it would go
<span><span><span>(5)</span><span>(<span>−2</span>)</span></span>−<span><span>(2)</span><span>(<span>−3</span>)</span></span></span>
So your answer should be <span>−4</span>