Answer:
0.3721 or 37.21%
Step-by-step explanation:
P(I) = 0.60; P(II) = 0.40;
P(not defective I) = 0.90; P(not defective II) = 0.80
The probability that the phone came from factory II, given that is not defective, is determined by the probability of a phone from factory II not being defective divided by the probability of a phone not being defective.

The probability is 0.3721 or 37.21%.
B is the answer ma brutha
Part A:
Given

defined by


but

Since, f(xy) ≠ f(x)f(y)
Therefore, the function is not a homomorphism.
Part B:
Given

defined by

Note that in

, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular


and

Therefore, the function is a homomorphism.
Part C:
Given

, defined by


Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.
Part D:
Given

, defined by


but

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.
Part E:
Given

, defined by
![\left([x_{12}]\right)=[x_4]](https://tex.z-dn.net/?f=%5Cleft%28%5Bx_%7B12%7D%5D%5Cright%29%3D%5Bx_4%5D)
, where
![[u_n]](https://tex.z-dn.net/?f=%5Bu_n%5D)
denotes the lass of the integer

in

.
Then, for any
![[a_{12}],[b_{12}]\in Z_{12}](https://tex.z-dn.net/?f=%5Ba_%7B12%7D%5D%2C%5Bb_%7B12%7D%5D%5Cin%20Z_%7B12%7D)
, we have
![f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\ \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%2B%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Ba%2Bb%5D_%7B12%7D%5Cright%29%20%5C%5C%20%20%5C%5C%20%3D%5Ba%2Bb%5D_4%3D%5Ba%5D_4%2B%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29%2Bf%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
and
![f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Bab%5D_%7B12%7D%5Cright%29%20%5C%5C%20%5C%5C%20%3D%5Bab%5D_4%3D%5Ba%5D_4%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29f%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
Therefore, the function is a homomorphism.
Answer:
20°
Step-by-step explanation:
40°, 70° and 90° are the measures of the three angles of the quadrilateral.
Measure of fourth angle of the Quadrilateral
= 360° - (40° + 70° + 90°)
= 360° - 200°
= 160°
Measure of angle 1 will be equal to the measure of the linear pair angle of 160° as they are corresponding angles.
Thus,


Alternate method:
![m\angle 1 = 180\degree- [360\degree-(40\degree+70\degree+90\degree)]](https://tex.z-dn.net/?f=m%5Cangle%201%20%3D%20180%5Cdegree-%20%5B360%5Cdegree-%2840%5Cdegree%2B70%5Cdegree%2B90%5Cdegree%29%5D)
![\implies m\angle 1 = 180\degree- [360\degree-200\degree]](https://tex.z-dn.net/?f=%5Cimplies%20m%5Cangle%201%20%3D%20180%5Cdegree-%20%5B360%5Cdegree-200%5Cdegree%5D)

