Answer:
x = 1\2 and y = 0
Step-by-step explanation:
8x + 3y = 4 * 5\3
14x - 5y = 7 * 1
40\3x + 5y = 20\3 -------- 1
14x - 5y = 7 ----------------- 2
add equation 1 and 2
82\3x = 41\3
x = <u>4</u><u>1</u><u> </u> <u>3</u>
3 * 82
x = 1\2
subtitute 1\2 for x in equation 2
14\2 - 5y = 7
7 - 5y = 7
5y = 7 - 7
y = 0\5
y = 0
thus x = 1\2 and y = 0

The answer is (3) -5 and 5.
Answer:
C
Step-by-step explanation:
(2x + 3)^5 = C(5,0)2x^5*3^0 +
C(5,1)2x^4*3^1 + C(5,2)2x^3*3^2 + C(5,3)2x^2*3^3 + C(5,4)2x^1*3^4 + C(5,5)2x^0*3^5
Recall that
C(n,r) = n! / (n-r)! r!
C(5,0) = 1
C(5,1) = 5
C(5,2) = 10
C(5,3) = 10
C(5,4) = 5
C(5,5) = 1
= 1(2x^5)1 + 5(2x^4)3 + 10(2x^3)3^2 + 10(2x^2)3^3 + 5(2x^1)3^4 + 1(2x^0)3^5
= 2x^5 + 15(2x^4) + 90(2x^3) + 270(2x^2) + 405(2x) +243
= 32x^5 + 15(16x^4) + 90(8x^3) + 270(4x^2) + 810x + 243
= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243