An exponential expression is one in which a number has been raised to a certain power.
<h3>What is an exponential expression?</h3>
An exponential expression is one in which a number has been raised to a certain power.
Now;
1) 3^2 . (3^3)^2 . 3^-8 = 3^2 + 6 - 8= 3^0 = 1
2) (3^2) (2.3)^-3/2^-2 = 3^2 . 2^-3 . 3^-3/2^-3 = 1/3
3) (2^-1) . (3 . 2)^4/(3 . 2)^3 = 2^-1. 3^4 . 2^4/ 3^3. 2^3 = 3
4) 2^5 . 3^5 . 6^-5 = 32 * 243/7776 = 1
5) (2^3) . (2 . 3)^-1/2^2 = 2^3 . 2^-1 . 3^-1/2^2 = 1/3
Learn more about exponential function:brainly.com/question/14355665
#SPJ1
Answer:
y=6x-2 is perpendicular to the 6y=-x+7
y=6x+1 is parallel to the y=6x-2
Step-by-step explanation:
if product of two lines gradient is -1 than lines are perpendicular
gr y=6x-2
y=mx+c m=gradient
1)m=6
2)m=-1/6
3)m=6
if gradients of 2 lines are equal they are paralel
Answer:
Pedro pagó $448
Step-by-step explanation:
Sea P el precio inicial de un objeto.
Si aplicamos un descuento del X%, entonces el nuevo precio del objeto es:
NP = P*(1 - X%/100%)
y lo que estamos ahorrando es:
P - NP
En este caso, primero tenemos un descuento del 30%, entonces:
NP = P*(1 - 30%/100%) = P*(1 - 0.3)
Luego tenemos otro descuento, esta vez del 20%, entonces:
NP' = NP*(1 - 20%/100%) = P*(1 - 0.3)*(1 - 20%/100%) = P*(1 - 0.3)*(1 - 0.2)
Lo que Pedro ahorra es igual a $352
entonces:
P - NP' = $352
P - P*(1 - 0.3)*(1 - 0.2) = $352
P*(1 - (1 - 0.3)*(1 - 0.2)) = $352
P*(1 - 0.56) = $352
P = $352/(1 - 0.56) = $800
Esto significa que el precio original era $800.
Y lo que pedro pago esta dado por la ecuación:
NP' = P*(1 - 0.2)*(1 - 0.3) = $800*(1 - 0.2)*(1 - 0.3) = $448.
On number 2 2 times -3 is 6
Answer:
Shenika invites 7 friends and each one gets 5 cookies.
= 7*5
= 35
Based on above answer, Shenika will need a total of 35 cookies for all.
-----------------------------------------------------------------------------------------------------------
Each box has 12 cookies.
Total cookies = 35
Let the number of boxes be x.
12*x = 35
x = 35/12
x = 2.9
This means she would need <em><u>3 boxes</u></em>.