Answer:
- (6-u)/(2+u)
- 8/(u+2) -1
- -u/(u+2) +6/(u+2)
Step-by-step explanation:
There are a few ways you can write the equivalent of this.
1) Distribute the minus sign. The starting numerator is -(u-6). After you distribute the minus sign, you get -u+6. You can leave it like that, so that your equivalent form is ...
(-u+6)/(u+2)
Or, you can rearrange the terms so the leading coefficient is positive:
(6 -u)/(u +2)
__
2) You can perform the division and express the result as a quotient and a remainder. Once again, you can choose to make the leading coefficient positive or not.
-(u -6)/(u +2) = (-(u +2)-8)/(u +2) = -(u+2)/(u+2) +8/(u+2) = -1 + 8/(u+2)
or
8/(u+2) -1
Of course, anywhere along the chain of equal signs the expressions are equivalent.
__
3) You can separate the numerator terms, expressing each over the denominator:
(-u +6)/(u+2) = -u/(u+2) +6/(u+2)
__
4) You can also multiply numerator and denominator by some constant, say 3:
-(3u -18)/(3u +6)
You could do the same thing with a variable, as long as you restrict the variable to be non-zero. Or, you could use a non-zero expression, such as 1+x^2:
(1+x^2)(6 -u)/((1+x^2)(u+2))
Their selling price was 2.45 times the price they bought it. If they split the profit evenly and there was two of them, multiply their profit by two and divide that number by 800 to find how much more they sold it for, so they sold it for 245% more than they bought it
The formula for the lateral surface area of a right circular cone is:

where r is the radius of the base, and l is the slant height.
Plugging in the values we get:
Answer:
the solution set consists of {x < -2 ∪ x > 10/3}
Step-by-step explanation:
|3x - 2| > 8 is equivalent to the following set of inequalities:
1) 3x - 2 > 8
and
2) -(3x - 2) > 8
In case 1, above, add 2 to both sides, obtaining 3x > 10, or x > 10/3.
In case 2, above, carry out the indicated multiplication first:
-3x + 2 > 8. Next, subtract 2 from both sides: -3x > 6.
Next, divide both sides by -3, remembering to reverse the direction of the inequality sign: x < -2.
Thus, the solution set consists of {x < -2 ∪ x > 10/3}
The teacher would have to grade 322 problems
14 (problems) x 23 (students)
Answer: 322