Answer:x
Step-by-step explanation:
Answer:
use logarithms
Step-by-step explanation:
Taking the logarithm of an expression with a variable in the exponent makes the exponent become a coefficient of the logarithm of the base.
__
You will note that this approach works well enough for ...
a^(x+3) = b^(x-6) . . . . . . . . . . . variables in the exponents
(x+3)log(a) = (x-6)log(b) . . . . . a linear equation after taking logs
but doesn't do anything to help you solve ...
x +3 = b^(x -6)
There is no algebraic way to solve equations that are a mix of polynomial and exponential functions.
__
Some functions have been defined to help in certain situations. For example, the "product log" function (or its inverse) can be used to solve a certain class of equations with variables in the exponent. However, these functions and their use are not normally studied in algebra courses.
In any event, I find a graphing calculator to be an extremely useful tool for solving exponential equations.
Answer:
D
Step-by-step explanation:
-4 is listed twice with 2 different outputs
Answer:
About 300 pages
Explanation:
Week 1: 75 pages
+
Week 2: 75 pages
+
Week 3: 75 pages
+
Week 4: 75 pages
=
About 300 pages in one month
cool man susisjdjdsjkssks didjsjjahssjskwkjxjdd