Answer:
- Calcium binds to troponin C
- Troponin T moves tropomyosin and unblocks the binding sites
- Myosin heads join to the actin forming cross-bridges
- ATP turns into ADP and inorganic phosphate and releases energy
- The energy is used to impulse myofilaments slide producing a power stroke
- ADP is released and a new ATP joins the myosin heads and breaks the bindings to the actin filament
- ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, starting a new cycle
- Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Explanation:
In rest, the tropomyosin inhibits the attraction strengths between myosin and actin filaments. Contraction initiates when an action potential depolarizes the inner portion of the muscle fiber. Calcium channels activate in the T tubules membrane, releasing <u>calcium into the sarcolemma.</u> At this point, tropomyosin is obstructing binding sites for myosin on the thin filament. When calcium binds to troponin C, troponin T alters the tropomyosin position by moving it and unblocking the binding sites. Myosin heads join to the uncovered actin-binding points forming cross-bridges, and while doing so, ATP turns into ADP and inorganic phosphate, which is released. Myofilaments slide impulsed by chemical energy collected in myosin heads, producing a power stroke. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Finally, Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Respiration is one of them
I think it’s
C, decreased sources diversity
Compound microscope
<h3>
Further explanation</h3>
In 1665, Robert Hooke used a compound microscope to observe cells. Hooke observes the cell walls of dead plants (in the form of cork) when they appear under a microscope. He named it the cell because it looked similar to a cellula or small room inhabited by monks.
Development of microscopy:
- 1590: Hans and Zacharias Janssen, as Dutch lens grinders, mounted two lenses in a tube to produce the first compound microscope.
- 1660: Robert Hooke published <em>Micrographia</em>, containing detailed observations of biological materials made with the best compound microscope.
- 1676: Anton van Leeuwenhoek was the first person to observe a live cell under a microscope, i.e., the algae Spirogyra.
- 1931: Ernst Ruska constructed the first electron microscope. With the invention of the electron microscope, many infectious agents smaller than bacteria could be seen.
Until now, we can see how important the use of microscopes, especially in microbiology, that is the study of microorganisms.
<h3>Learn more</h3>
- How was the water filtered to remove debris and living organisms? brainly.com/question/5646770
- About the single bonds in fatty acids brainly.com/question/1386856
- The theoretical density of platinum which has the FCC crystal structure. brainly.com/question/5048216
Keywords: compound microscope, Robert Hooke, cells first observed, cork, dead plant, walls, Anton van Leeuwenhoek