Depend if you are more creative or more a solver(good in math).
c because the elasticity of arteries allow them to expand and contain more blood in them.
Hope this helps :)
Answer:
The cell interior would experience higher than normal Na+ concentrations and lower than normal K+ concentrations.
Explanation:
Na+/K+ ATPase exists in two forms: Its phosphorylated form has a high affinity for K+ and low affinity for Na+. ATP hydrolysis and phosphorylation of the Na+/K+ pump favor the release of Na+ outside the cell and binding of K+ ions from the outside of the cell. Dephosphorylation of the pump increases its affinity for Na+ and reduces that for K+ ions resulting in the release of K+ ions inside the cells and binding to the Na+ from the cells.
The presence of ATP analog would not allow the pump to obtain its phosphorylated form. Therefore, Na+ ions would not be released outside the cells. This would increase the Na+ concentration inside the cell above the normal. Similarly, the pump would not be able to pick the K+ from the outside of the cell resulting in reduced cellular K+ concentration below the normal range.
Answer: by being smart and pog and swag
Explanation:
Exchange of gases in fish is very efficient because of: the large surface area of the gills. the large surface area of the blood capillaries in each gill filament. the short distance required for diffusion – the outer layer of the gill filaments and the capillary walls are just one cell thick.