Answer:
Step-by-step explanation:
<h3>Part B</h3>
Assumed the dimensions of the top and bottom parts are identical.
Since the cylindrical part has total height of 1.8 cm and the hemisphere volume is transferred to bottom part and the cone part is still full, the value of h is the difference of the total height of cylinder and full part of the top section of cylinder:
- h = 1.8 cm - 0.3 cm = 1.5 cm
<h3>Part C</h3>
Find the volume of sand in the bottom part. It consists of a hemisphere and a cylinder of 1.5 cm height.
- V(cylinder) = πr²h = 3.14*(2.6/2)²*1.5 ≈ 7.96 cm³
- V(hemisphere) = 2/3πr³ = 2/3*3.14*(2.6/2)³ ≈ 4.6 cm³
<u>Total sand in the bottom part:</u>
<u>Time taken:</u>
- 12.56 / 0.05 = 251.2 seconds = 4 min 11.2 seconds
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw
Answer:
height= 4.8cm
Step-by-step explanation:
volume= length×width× height given the volume and length and width, 288=12×5×h
288=60h
divide both sides by 60
h=4.8cm
9*13=117
12*16=192
We increased three meters to both the length and width of the garden.