Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂
Answer: -64.1 kJ.
Explanation:
According to first law of thermodynamics:
=Change in internal energy
q = heat absorbed or released
w = work done or by the system
w = work done by the system=
{Work is done by the system is negative as the final volume is greater than initial volume}
w = -855 Joules = 0.855 kJ (1kJ=1000J)
q = -65.0 kJ {Heat released by the system is negative}

Thus the change internal energy (ΔE) for a system that is giving off 65.0 kJ of heat and is performing 855 J of work on the surroundings is -64.1 kJ.
<span>Technetium (TC)- Transition metal.Promethium (Pm)- Rare earth metal.<span>Polonium (Po)- Metalliod.
</span></span><span>
Radioactivity tracers,</span>fission products,<span>controls fission reactions
</span><span>Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom.
</span>
For example<span>, the </span>half-life<span> of a radioactive substance is the amount of time it takes for </span>half<span> of its atoms to decay, and the </span>half-life<span> of a drug is the amount of time it takes before </span>half<span> of the active elements are either eliminated or broken down by the body.</span>
Answer:
Im not in 8th grade sorry
Explanation: