Both indicate the temperature at which the solid and liquid states of a substance are in equilibrium would be your answer.
This is beacause the melting point of a substance is the same as the freezing point of a substance. At this particular temp, the substance can be either a solid or a liquid.
hope this helps!
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Answer:
Hi Im an online tutor and i can assist you with all your assignments. We have experts in all fields. check out our website https://toplivewriters.com/
Explanation:
The heat of the reaction, in kJ, when 4.18 g of the hydrocarbon are combusted 775.70 kJ.
The heat energy is given as :
q = m c ΔT + Ccal ΔT
q = ( 974 g× 4.184 ×6.9) + 624 ×6.9
q = 32424.59 J
moles of hydrocarbon = 0.0418 mol
heat of combustion = 32424.59 J / 0.0418 mol
= 775707.89 J
= 775.70 kJ
Thus, A 4.18 g sample of a hydrocarbon is combusted in a bomb calorimeter that contains 974 g of water. the temperature of the water increases by 6.9 °C when the hydrocarbon is combusted. the calorimeter constant for the calorimeter was determined to be 624 J/°C. what is the heat of the reaction is 775.70 kJ.
To learn more about calorimeter here
brainly.com/question/28943378
#SPJ4