Answer:
Identity is true
Step-by-step explanation:










Therefore, the identity is true.
<u>Helpful tips:</u>
Pythagorean Identity: 
Quotient Identities: 
I think 5,8 if not I’m srry
Answer:
The answer is 81.
Step-by-step explanation:
Since the power of 4 is even, the result will be positive.

Simplify.

<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>Option</u><u> </u><u>A</u><u>)</u><u> </u><u>81</u><u>.</u>