1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
3 years ago
5

A bookkeeper bought 2,000 exercise book distributed 200 books to the student from poor economic background as donation .he sold

each remaining exercise book at rupees 10 more than the cost price of each and gained a percent 8%.
find the cost price of each exercise book​
Mathematics
1 answer:
Andrews [41]3 years ago
6 0

Books left=2000-200=1800

ATQ

\\ \sf\longmapsto 1800x+10=0.08x

\\ \sf\longmapsto 1800x-0.08x=-10

\\ \sf\longmapsto x(1800-0.08)=-10

\\ \sf\longmapsto x(1799.92)=-10

\\ \sf\longmapsto x=|\dfrac{10}{1799.92}|

\\ \sf\longmapsto x=0.005

Now

\\ \sf\longmapsto CP=0.005(2000)=10

You might be interested in
What the unit rate for this? “9 inches of snow in 3 hous”
anastassius [24]

Answer:

3 inches per hour

Step-by-step explanation:

divide the number on the y axis (i'm assuming it's inches of snow) by the number on the x axis (i'm assuming its hours)

by doing this you will get 3 inches per hour

4 0
4 years ago
What are the numbers that are either negative or greater than 5
Reptile [31]

postive or greater6 7 8 9 10

negative or less 4 3 2 1 0

7 0
3 years ago
What is the explicit formula for this sequence?
ddd [48]

Answer:

a_n=-7+4(n-1)

or

a_n=-7+(n-1)(4)

Step-by-step explanation:

-7,-3,1,5,... is a arithmetic sequence.

Arithmetic sequences have a common difference. That is, it is going up by 4 each time.

When you see arithmetic sequence, you should think linear equation.

The point-slope form of a line is y-y_1=m(x-x_1).

m is the common difference, the slope.

Any they are using the point at x=1 in the point slope form.  So they are using (1,-7).

So let's put this into our point-slope form:

y-(-7)=4(x-1)

y+7=4(x-1)

Subtract 7 on both sides:

y=-7+4(x-1)

So your answer is

a_n=-7+4(n-1)

6 0
4 years ago
Rewrite 8 1/2 as an improper fraction ​
g100num [7]

Answer:

17/2

Step-by-step explanation:

8 × 2 = 16 adding 1 = 17

3 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Other questions:
  • 57=100<br> 36=?%<br><br> 36=?%.............
    5·2 answers
  • Is a-b parallel to c-d? Explain
    8·1 answer
  • X=y+6<br> X+6y=20 <br><br><br> Solving systems of equations using substitution
    8·1 answer
  • Given that p(x)=3x^2-2x+1. Find p(3) and p(x+1)<br> p(3)= p(x+1)=<br><br> please show work
    13·1 answer
  • 5 short sentences for spring(spring season)
    12·1 answer
  • X-intercept is -5, y-intercept is 2<br> Write in slop intercept form
    12·1 answer
  • Round 97.081 to the nearest 10th
    7·2 answers
  • What is the answer to this equation: 3c + 7 - 9c
    12·2 answers
  • Complete the set of ordered pairs for the relation.
    9·1 answer
  • Definition of Identity property, Association property and communicative property please answer!​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!