1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
9

Simplify and express each of the following in exponential form:

Mathematics
1 answer:
Ganezh [65]3 years ago
8 0

Step-by-step explanation:

\bf \underline{➤  Answer\: (1)-} \\

{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times 4}{3 \times 32}}

Convert all of them into exponents and powers form.

{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times {2}^{2}}{{3}^{1} \times {2}^{5}}}

Simplify each of them...

{\tt \longrightarrow \dfrac{{2}^{3 + 2} \times {3}^{4}}{{3}^{1} \times {2}^{5}} = \dfrac{{2}^{5} \times {3}^{4}}{{3}^{1} \times {2}^{5}}}

{\tt \longrightarrow {2}^{5 - 5} \times {3}^{4 - 1} = {2}^{0} \times {3}^{3}}

{\tt \longrightarrow {3}^{3}}

\bf \underline{➤  Answer\: (2)-} \\

{\tt \longrightarrow \bigg(( {5}^{2} {)}^{3} \times {5}^{4} \bigg) \div {5}^{7}}

{\tt \longrightarrow \bigg({5}^{2 \times 3}\times {5}^{4} \bigg) \div {5}^{7}}

{\tt \longrightarrow {5}^{6 + 4} \div {5}^{7} = {5}^{10} \div {5}^{7}}

{\tt \longrightarrow {5}^{10 - 7}}

{\tt \longrightarrow {5}^{3}}

\bf \underline{➤  Answer\: (3)-} \\

{\tt \longrightarrow {25}^{4} \times {5}^{3}}

{\tt \longrightarrow ( {5}^{2})^{4} \times {5}^{3} = {5}^{2 \times 4} \times {5}^{3}}

{\tt \longrightarrow {5}^{8} \times {5}^{3} = {5}^{8 + 3}}

{\tt \longrightarrow {5}^{11}}

\bf \underline{➤  Answer\: (4)-} \\

\tt \longrightarrow \dfrac{3 \times {7}^{2} \times {11}^{8}}{21 \times {11}^{3}}

\tt \longrightarrow \dfrac{{3}^{1} \times {7}^{2} \times {11}^{8}}{ {7}^{1} \times {3}^{1} \times {11}^{3}}

{\tt \longrightarrow {3}^{1 - 1} \times {7}^{2 - 1} \times {11}^{8 - 3}}

{\tt \longrightarrow {3}^{0} \times {7}^{1} \times {11}^{5}}

{\tt \longrightarrow {7}^{1} \times {11}^{5}}

\bf \underline{➤  Answer\: (5)-} \\

\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4} \times {3}^{3}}

\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4 + 3}} = \dfrac{{3}^{7}}{{3}^{7}}

\tt \longrightarrow {3}^{7 - 7}

\tt \longrightarrow {3}^{0}

\bf \underline{➤  Answer\: (6)-} \\

{\tt \longrightarrow {2}^{0} + {3}^{0} + {4}^{0}}

{\tt \longrightarrow 1 + 1 + 1 = 3}

{\tt \longrightarrow {3}^{1}}

\bf \underline{➤  Answer\: (7)-} \\

{\tt \longrightarrow {2}^{0} \times {3}^{0} \times {4}^{0}}

{\tt \longrightarrow 1 \times 1 \times 1 = 1}

{\tt \longrightarrow {1}^{1}}

\bf \underline{➤  Answer\: (8)-} \\

{\tt \longrightarrow ({3}^{0} + {2}^{0}) \times {5}^{0}}

{\tt \longrightarrow (1 + 1) \times 1 = 2 \times 1}

{\tt \longrightarrow {2}^{1}}

\bf \underline{➤  Answer\: (9)-} \\

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{4}^{3} \times {a}^{3}}

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{( {2}^{2}{)}^{3} \times {a}^{3}}

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{2}^{2 \times 3} \times {a}^{3}} = \dfrac{{2}^{8} \times {a}^{5}}{{2}^{6} \times {a}^{3}}

\tt \longrightarrow {2}^{8 - 6} \times {a}^{5 - 3}

\tt \longrightarrow {2}^{2} \times {a}^{2}

\bf \underline{➤  Answer\: (10)-} \\

{\tt \longrightarrow \bigg(\dfrac{{a}^{5}}{{a}^{3}} \bigg) \times {a}^{8}}

{\tt \longrightarrow {a}^{5 - 3} \times {a}^{8}}

{\tt \longrightarrow {a}^{2} \times {a}^{8} = {a}^{2 + 8}}

{\tt \longrightarrow {a}^{10}}

\bf \underline{➤  Answer\: (11)-} \\

{\tt \longrightarrow \dfrac{{4}^{5} \times {a}^{8} \: {b}^{3}}{{4}^{5} \times {a}^{5} \: {b}^{2}}}

{\tt \longrightarrow {4}^{5 - 5} \times {a}^{8 - 5} \times {b}^{3 - 2}}

{\tt \longrightarrow {4}^{0} \times {a}^{3} \times {b}^{1}}

{\tt \longrightarrow {a}^{3} \times {b}^{1}}

\bf \underline{➤  Answer\: (12)-} \\

{\tt \longrightarrow \bigg( {2}^{3} \times 2 \bigg)^{2}}

{\tt \longrightarrow \bigg( {2}^{3 + 1}\bigg)^{2} = {2}^{4 \times 2}}

{\tt \longrightarrow {2}^{8}}

━━━━━━━━━━━━━━━━━━━━━

\bf \underline{Used \:Laws\: of \:Intergal\:Exponents-} \\

{\to \sf {a}^{m} \times {a}^{n} = {a}^{m + n}}

{\to \sf {a}^{m} \div {a}^{n} = {a}^{m - n}}

{\to \sf \bigg( {a}^{m} \bigg)^{n} = {a}^{m \times n}}

{\to \sf \dfrac{ {a}^{m}}{ {b}^{m}} = \bigg( {\dfrac{a}{b}}\bigg)^{m}}

{\to \sf {a}^{0} = 1}{\to \sf {a}^{ - 1} = \dfrac{1}{a}}

\textsf{Hope this helps!!}\\

You might be interested in
1.55kg to a whole number
katrin2010 [14]
31/20, or turned into a mixed fraction, is 1 11/20kg. Hope this helps!
6 0
3 years ago
Read 2 more answers
The rectangular room is 10.25 inches by 8 inches. if 1 inch represents 2 feet of the actual room, what is the scale factor and a
GenaCL600 [577]
The rectangular room is 10.25 inches by 8 inches. If 1 inch represents 2 feet of the actual room. What is the scale factor and actual area of the room?

10.25 x 2 = 20.5 ft

and

8 x 2 = 16 ft

1in/ 2 ft or 1 in/ 24 inches
4 0
4 years ago
I’m so confused on shapes of pls help me
il63 [147K]

Answer:

150 units

Step-by-step explanation:

2(2x)+2(x+12)=4x+2x+(x+3)

4x+2x+24=4x+2x+x+3

24-3=4x+2x+x-4x-2x

21=x

2(21)+(21)+12+2(21)+(21)+12

42+21+12+42+21+12

150

8 0
3 years ago
This star is made up of 4 equilateral triangles of equal area and a square.
pentagon [3]

Answer:

24 cm

Step-by-step explanation:

Given: Picture of the star is made up of 4 unshaded equilateral triangles of equal area and a shaded square.

Area of the shaded region (square) = 9\,\, cm^2

To find: the perimeter of the star

Solution:

Area of the shaded region (square) = 9\,\, cm^2

Area of square = (side)^2

(side)^2=9\\side=3\,\,cm

As each equilateral triangle has side lengths that are the same as the side length of the square,

length of side of the star = 3 cm

Perimeter is the sum of lengths of the sides.

Perimeter of star = sum of 8 sides of the star

= 8 × 3 = 24 cm

4 0
4 years ago
Pls help and show workings.... due ASAP <br> SHOW WORKINGS PLEASE!
MrRa [10]

Answer: 7.29 or 7 1/4 or 29/4 (they're all equal, just rewritten)

Step-by-step explanation:

the angles are equal, so we set the equations to each other and then solve. here's my work:

12k - 9 = 8k + 20

12k (- 8k) - 9 = 8k ( - 8k) + 20

4k - 9 = 20

4k -9 ( + 9) = 20 ( + 9)

4k = 29

k = 7.29 or 7 1/4 or 29/4

3 0
3 years ago
Other questions:
  • A missile is launched from the ground. Its height,h(x) can be represented by a qyadratic function in terms of time, x, in second
    7·1 answer
  • Solve for D<br> 6/34 = D/68
    14·1 answer
  • What is the difference between 76.82 and 2.761?<br> 49.210<br> 74.679<br> 74.059<br> 79.581
    8·1 answer
  • GameStop has the Xbox One advertised for 15% off the original price of $350, plus 6% sales tax. Online Xbox One is advertised at
    7·1 answer
  • Simplify the expression 3+2^2 / 2+3
    7·1 answer
  • Can you tell de answer?
    14·1 answer
  • Please help no links please!!!!!
    15·1 answer
  • What is the multiplicative identity of -12/13
    15·1 answer
  • Simplify -2.3f+0.9f-14-4
    14·2 answers
  • Could someone help with this math question please brainlest and points
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!