1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
9

Simplify and express each of the following in exponential form:

Mathematics
1 answer:
Ganezh [65]3 years ago
8 0

Step-by-step explanation:

\bf \underline{➤  Answer\: (1)-} \\

{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times 4}{3 \times 32}}

Convert all of them into exponents and powers form.

{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times {2}^{2}}{{3}^{1} \times {2}^{5}}}

Simplify each of them...

{\tt \longrightarrow \dfrac{{2}^{3 + 2} \times {3}^{4}}{{3}^{1} \times {2}^{5}} = \dfrac{{2}^{5} \times {3}^{4}}{{3}^{1} \times {2}^{5}}}

{\tt \longrightarrow {2}^{5 - 5} \times {3}^{4 - 1} = {2}^{0} \times {3}^{3}}

{\tt \longrightarrow {3}^{3}}

\bf \underline{➤  Answer\: (2)-} \\

{\tt \longrightarrow \bigg(( {5}^{2} {)}^{3} \times {5}^{4} \bigg) \div {5}^{7}}

{\tt \longrightarrow \bigg({5}^{2 \times 3}\times {5}^{4} \bigg) \div {5}^{7}}

{\tt \longrightarrow {5}^{6 + 4} \div {5}^{7} = {5}^{10} \div {5}^{7}}

{\tt \longrightarrow {5}^{10 - 7}}

{\tt \longrightarrow {5}^{3}}

\bf \underline{➤  Answer\: (3)-} \\

{\tt \longrightarrow {25}^{4} \times {5}^{3}}

{\tt \longrightarrow ( {5}^{2})^{4} \times {5}^{3} = {5}^{2 \times 4} \times {5}^{3}}

{\tt \longrightarrow {5}^{8} \times {5}^{3} = {5}^{8 + 3}}

{\tt \longrightarrow {5}^{11}}

\bf \underline{➤  Answer\: (4)-} \\

\tt \longrightarrow \dfrac{3 \times {7}^{2} \times {11}^{8}}{21 \times {11}^{3}}

\tt \longrightarrow \dfrac{{3}^{1} \times {7}^{2} \times {11}^{8}}{ {7}^{1} \times {3}^{1} \times {11}^{3}}

{\tt \longrightarrow {3}^{1 - 1} \times {7}^{2 - 1} \times {11}^{8 - 3}}

{\tt \longrightarrow {3}^{0} \times {7}^{1} \times {11}^{5}}

{\tt \longrightarrow {7}^{1} \times {11}^{5}}

\bf \underline{➤  Answer\: (5)-} \\

\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4} \times {3}^{3}}

\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4 + 3}} = \dfrac{{3}^{7}}{{3}^{7}}

\tt \longrightarrow {3}^{7 - 7}

\tt \longrightarrow {3}^{0}

\bf \underline{➤  Answer\: (6)-} \\

{\tt \longrightarrow {2}^{0} + {3}^{0} + {4}^{0}}

{\tt \longrightarrow 1 + 1 + 1 = 3}

{\tt \longrightarrow {3}^{1}}

\bf \underline{➤  Answer\: (7)-} \\

{\tt \longrightarrow {2}^{0} \times {3}^{0} \times {4}^{0}}

{\tt \longrightarrow 1 \times 1 \times 1 = 1}

{\tt \longrightarrow {1}^{1}}

\bf \underline{➤  Answer\: (8)-} \\

{\tt \longrightarrow ({3}^{0} + {2}^{0}) \times {5}^{0}}

{\tt \longrightarrow (1 + 1) \times 1 = 2 \times 1}

{\tt \longrightarrow {2}^{1}}

\bf \underline{➤  Answer\: (9)-} \\

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{4}^{3} \times {a}^{3}}

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{( {2}^{2}{)}^{3} \times {a}^{3}}

\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{2}^{2 \times 3} \times {a}^{3}} = \dfrac{{2}^{8} \times {a}^{5}}{{2}^{6} \times {a}^{3}}

\tt \longrightarrow {2}^{8 - 6} \times {a}^{5 - 3}

\tt \longrightarrow {2}^{2} \times {a}^{2}

\bf \underline{➤  Answer\: (10)-} \\

{\tt \longrightarrow \bigg(\dfrac{{a}^{5}}{{a}^{3}} \bigg) \times {a}^{8}}

{\tt \longrightarrow {a}^{5 - 3} \times {a}^{8}}

{\tt \longrightarrow {a}^{2} \times {a}^{8} = {a}^{2 + 8}}

{\tt \longrightarrow {a}^{10}}

\bf \underline{➤  Answer\: (11)-} \\

{\tt \longrightarrow \dfrac{{4}^{5} \times {a}^{8} \: {b}^{3}}{{4}^{5} \times {a}^{5} \: {b}^{2}}}

{\tt \longrightarrow {4}^{5 - 5} \times {a}^{8 - 5} \times {b}^{3 - 2}}

{\tt \longrightarrow {4}^{0} \times {a}^{3} \times {b}^{1}}

{\tt \longrightarrow {a}^{3} \times {b}^{1}}

\bf \underline{➤  Answer\: (12)-} \\

{\tt \longrightarrow \bigg( {2}^{3} \times 2 \bigg)^{2}}

{\tt \longrightarrow \bigg( {2}^{3 + 1}\bigg)^{2} = {2}^{4 \times 2}}

{\tt \longrightarrow {2}^{8}}

━━━━━━━━━━━━━━━━━━━━━

\bf \underline{Used \:Laws\: of \:Intergal\:Exponents-} \\

{\to \sf {a}^{m} \times {a}^{n} = {a}^{m + n}}

{\to \sf {a}^{m} \div {a}^{n} = {a}^{m - n}}

{\to \sf \bigg( {a}^{m} \bigg)^{n} = {a}^{m \times n}}

{\to \sf \dfrac{ {a}^{m}}{ {b}^{m}} = \bigg( {\dfrac{a}{b}}\bigg)^{m}}

{\to \sf {a}^{0} = 1}{\to \sf {a}^{ - 1} = \dfrac{1}{a}}

\textsf{Hope this helps!!}\\

You might be interested in
Write an expression that is equivalent <br> 1/2a-4
dimaraw [331]

Step-by-step explanation:

Answer

a - 8

------------+

2

8 0
2 years ago
NEED HELP NOW!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Contact [7]
<span>which means the word ur</span>
3 0
3 years ago
Toni is shopping for clothes at the store she buys 8 shirts for $8.00 what is the unit rate for the shirts?
lozanna [386]

Answer:

$1.00

Step-by-step explanation:

The unit rate in this scenario would be $1.00 , meaning that Toni is paying $1.00 for every shirt. This can be calculated by dividing the total price that she is paying for the shirts by the total number of shirts that Toni is purchasing like so...

$8.00 / 8 = $1.00 per shirt

The unit rate is basically the value over the denominator of 1 which would be the case as seen above since $1 buys 1 shirt (\frac{1 dollar}{1 shirt}) as opposed to $8 dollars 8 shirts (\frac{8 dollars}{8 shirts}) as mentioned in the question.

8 0
4 years ago
Enter the difference 1 1/5 - 3/5
natali 33 [55]
Hey there! :D

Convert 1 1/5 to a mixed number. 

1 1/5= 6/5

6/5-3/5= 3/5

3/5 <== the difference

I hope this helps!
~kaikers 
6 0
3 years ago
Read 2 more answers
What is the numeratorfor the following rational expretion? 3/k+4/k=?/k
grin007 [14]
Because they all have the same denominator, all you have to do is add the numerator! So, 3/k + 4/k would equal 7/k
6 0
4 years ago
Read 2 more answers
Other questions:
  • Can someone pretty please help i just don't get the last part:( It says the following shows the estimated population and annual
    14·1 answer
  • Rule: add 15, subtract 10 first term 4
    14·1 answer
  • Sarah is training for a bike race she rides her bike 5 3/4 miles and 1/3 hours what is Sarah's rate in miles per hour
    10·1 answer
  • In a 30°-60°-90° triangle, the length of the hypotenuse is 30. Find the length of the shorter leg.
    13·2 answers
  • What is the answer to this particular question?
    12·1 answer
  • The first difference of a sequence is the arithmetic sequence 2, 4, 6, 8, 10.... find the first six terms of the original sequen
    11·1 answer
  • You roll one die 8 times. What is the probability of rolling exactly six fours
    15·1 answer
  • Help me please!!!!!!!!
    13·1 answer
  • The following table shows ordered pairs for a linear function x. Which one of the following equations was used to generate this
    6·1 answer
  • Put these numbers in order from greatest to least. 27/30, -7, 15/25<br>​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!