Part A)
If f(x) - 3 is the new equation, it means there is a vertical translation of f(x) down 3 units. The y-intercept will decrease by 3 units. Areas of increasing on the function may be lessened as the function is being translated down 3 units. The areas of decrease will increase because the function is being translated down. End behaviour will not change from a translation as long as the function is continuous at each end, (not a finite function with end points). The evenness or oddness of f(x) will not change either.
Part B:
The y-intercept will be flipped horizontally about the x-axis and multiplied by 2. This will mean that if the y-intercept was positive, it will now be negative and vice versa. The increasing and decreasing regions of the graph will be flipped, so anywhere f(x) was positive will now be negative and vice versa. They will also be double what they were before because all values are multiplied by 2. The end behaviour will switch. If f(x) was from Quad1->Quad3 for example, it will now be Quad2->Quad4 because of the flip at the x-axis. The evenness and oddness of the function will not change seeing as the degree of f(x) is not affected.
Yes, you are correct, it is A!
Recall the pencil line test, which is where you go across the x axis (the graph horizontally) and see if the pencil touches any two points at the same time. If it does, then the graph is not a function.
Point being: since question a has a bunch of y values on top of one x value, the pencil would inevitably touch multiple at the same time, hence why it is easy to tell that it is not a function! Hope this helps :)
PART A
Change the fractions into improper fractions
pablo - rosa = 4 4/9 - 3 5/12
pablo - rosa = 40/9 - 41/12
Equalize the denominator of the fractions
I equalize them to 36. If the denominator 9 is multiplied by 4, so is the numerator. If the denominator 12 is multiplied by 3, so is the numerator.
pablo - rosa = 40/9 - 41/12
pablo - rosa = (40 × 4)/(9 × 4) - (41 × 3)/(12 × 3)
pablo - rosa = 160/36 - 123/36
pablo - rosa = 37/36
Change it to mixed fraction
pablo - rosa = 37/36
pablo - rosa = 1 1/36
Pablo has 1 1/36 quarts more than Rosa
PART B
Calculate the iced tea Pablo gave to Rosa
Change into proper fraction/improper fraction
iced tea given = 15% × 4 4/9
iced tea given = 15/100 × 40/9
iced tea given = 600/900
iced tea given = 2/3
Calculate Pablo's iced tea after giving
Pablo's = 40/9 - 2/3
Pablo's = 40/9 - (2 × 3)/(3×3)
Pablo's = 40/9 - 6/9
Pablo's = 34/9
Pablo's = 3 7/9
Calculate Rosa's iced tea
Rosa's = 41/12 + 2/3
Rosa's = 41/12 + (2 × 4)/(3 × 4)
Rosa's = 41/12 + 8/12
Rosa's = 49/12
Rosa's = 4 1/12
Pablo has 3 7/9 quarts and Rosa has 4 1/12 quarts