here's the solution,
- n = 11
- a = 5 ( a = first term )
- d = 6 ( d = common difference )
we know,
=》
![nth \: \: term \: = a \: + (n - 1) \times d](https://tex.z-dn.net/?f=nth%20%20%5C%3A%20%5C%3A%20term%20%5C%3A%20%20%3D%20a%20%20%20%5C%3A%20%2B%20%28n%20-%201%29%20%5Ctimes%20d)
=》
![11th \: \: term = 5 + (11 - 1) \times 6](https://tex.z-dn.net/?f=11th%20%5C%3A%20%20%5C%3A%20term%20%20%20%3D%205%20%2B%20%2811%20-%201%29%20%5Ctimes%206)
=》
![11th \: \: term = 5 + (10 \times 6)](https://tex.z-dn.net/?f=11th%20%5C%3A%20%20%5C%3A%20term%20%3D%205%20%2B%20%2810%20%5Ctimes%206%29)
=》
![11th \: \: term = 5 + 60](https://tex.z-dn.net/?f=11th%20%5C%3A%20%20%5C%3A%20term%20%20%3D%205%20%2B%2060)
=》
![11th \: \: term = 65](https://tex.z-dn.net/?f=11th%20%5C%3A%20%20%5C%3A%20term%20%3D%2065)
nth term ( 11th term ) = 65
Answer: x = 4
Step-by-step explanation:
MrBillDoesMath!
Answer to #4: 81/256 * s^8 * t^ 12
Comments:
(7x^3) ^ (1/2) = 7 ^ (1/2) * x^(3/2) where ^(1/2) means the square root of a quantity. The answer written (7x^3) is NOT correct.
---------------------
(1) (27s^7t^11)^ (4/3)
= 27^(4/3) * (s^7)^(4/3) * (t^11)^ (4/3)
As 27 = 3^3, 27 ^(4/3) = 3^4 = 81
(2) (-64st^2)^ (4/3) = (-64)^(4/3) * (s^4/3) * t(^8/3)
As 64 = (-4)^3, (-64)^(4/3) = (-4)^4 = +256
So (1)/(2) =
81 * s^(28/3)* t^(44/3)
------------------------------- =
256 s^(4/3) * t^((8/3)
81/256 * s ^ (28/3 - 4/3) * t^(44/3 - 8/3) =
81/256 * s^(24/3) * t (36/3) =
81/256 * s^8 * t^ 12
MrB
14.1% of 278 is 39.2. So 39.2 megabytes have been downloaded.
The inequality x < 9.7 tells us x needs to smaller than 9.7.
A number like 5 will be fine. Because 5 < 9.
But someone like 10 won't be fine.
Because 9 < 10.
Even 9.7 won't be suffice.
Because 9.7 < 9.7 does not make sense. If it was 9.7 <= 9.7 then it would be fine.