Given:
The given arithmetic sequence is:

To find:
The recursive formula of the given arithmetic sequence.
Solution:
We have,

Here, the first term is -3. So,
.
The common difference is:



The recursive formula of an arithmetic sequence is:

Where, d is the common difference.
Putting
, we get

Therefore, the recursive formula of the given arithmetic sequence is
, where
.
H(t) = Ho +Vot - gt^2/2
Vo = 19.6 m/s
Ho = 58.8 m
g = 9.8 m/s^2
H(t) = 58.8 + 19.6t -9.8t^2/2 = 58.8 + 19.6t - 4.9t^2
Maximun height is at the vertex of the parabole
To find the vertex, first find the roots.
58.8 + 19.6t - 4.9t^2 = 0
Divide by 4.9
12 + 4t - t^2 = 0
Change sign and reorder
t^2 - 4t -12 = 0
Factor
(t - 6)(t + 2) =0 ==> t = 6 and t = -2.
The vertex is in the mid point between both roots
Find H(t) for: t = [6 - 2]/2 =4/2 = 2
Find H(t) for t = 2
H(6) = 58.8 + 19.6(2) - 4.9(2)^2 = 78.4
Answer: the maximum height is 78.4 m
We have to check which of PEMDAS rules can be applied in this case. We have only ADDITION. In this case we can observe that addition is:
1. Associative

2. Commutative

3. has Additive property
The first one is additive
the second one is additive
the third one is multiplicative
the last one is multiplicative