Answer:
Children: $13
Adults: $18
Step-by-step explanation:
Well for both sets we can set up the following system of equations,

So first we need to solve for a in the first equation.
3a + 4c = 106
-4c to both sides
3a = -4c + 106
Divide 3 by both sides
<u>a = -4/3c + 35 1/3</u>
Now we plug in that a for a in 2a + 3c = 75.
2(-4/3c + 35 1/3) + 3c = 75
-8/3c + 70 2/3 + 3c = 75
Combine like terms
1/3c + 70 2/3 = 75
-70 2/3 to both sides
1/3c = 4 1/3
Divide 1/3 to both sides
c = 13
Now we can plug in 13 for c in 3a + 4c = 106,
3a + 4(13) = 106
3a + 52 = 106
-52 to both sides
3a = 54
Divide 3 by both sides.
a = 18
<em>Thus,</em>
<em>an adult ticket is $18 and a children's ticket is $13.</em>
<em />
<em>Hope this helps :)</em>
Answer:
s=P-b/2
Step-by-step explanation:
P-b=2s
P-b/2=s
First of all, when I do all the math on this, I get the coordinates for the max point to be (1/3, 14/27). But anyway, we need to find the derivative to see where those values fall in a table of intervals where the function is increasing or decreasing. The first derivative of the function is

. Set the derivative equal to 0 and factor to find the critical numbers.

, so x = -3 and x = 1/3. We set up a table of intervals using those critical numbers, test a value within each interval, and the resulting sign, positive or negative, tells us where the function is increasing or decreasing. From there we will look at our points to determine which fall into the "decreasing" category. Our intervals will be -∞<x<-3, -3<x<1/3, 1/3<x<∞. In the first interval test -4. f'(-4)=-13; therefore, the function is decreasing on this interval. In the second interval test 0. f'(0)=3; therefore, the function is increasing on this interval. In the third interval test 1. f'(1)=-8; therefore, the function is decreasing on this interval. In order to determine where our points in question fall, look to the x value. The ones that fall into the "decreasing" category are (2, -18), (1, -2), and (-4, -12). The point (-3, -18) is already a min value.
Multiple im pretty sure- Well, a multiple is any number obtained by multiplying other numbers together. Multiples are most commonly discussed in the context of integers.