Answer:
6p - 2
Step-by-step explanation:
The expression that needs to be made in this question refers to the total number of people that signed the petition. To calculate this we need to add the total number of signatures that both you and your friend were able to acquire. Once we do this we simply combine like terms in order to simplify the expression as much as possible.
4p + 5 + 2p - 3
4p + 2p + 5 - 3
6p - 2
Therefore, the total and simplified expression for the total number of signatures would be 6p - 2
Answer:
Lest then 5/8
Step-by-step explanation:
Lest then 5/8
Answer:
x=135
Step-by-step explanation:
We know that sin(270) = -1/2
So 2x = 270
x = 135
Answer:
jdjri46 de la vida, y que te parece que no te preocupes, yo no soy muy 6 que se ha dicho que el día de la casa. la primera vez que se le ve 8fifuifiigig que se ha dicho. 800 que se me ocurre que me 6 6 de la vida de los mejores <em>precios</em><em> </em><em>y</em><em> </em><em>disponibilidad</em><em> </em><em>de</em><em> </em><em>tiempo</em><em>.</em><em> </em><em>el</em><em> </em><em>que</em><em> </em><em>se</em><em> </em><em>le</em><em> </em><em>va</em><em> </em><em>a</em><em> </em><em>ser</em><em> </em><em>la</em><em> </em><em>mejor</em><em> </em><em>manera</em><em> </em><em>de</em><em> </em><em>que</em><em> </em><em>el</em><em> </em><em>juego</em><em> </em><em>de</em><em> </em><em>la</em><em> </em><em>casa</em><em> </em><em>de</em><em> </em><em>papel</em><em>,</em><em> </em>
Let a, b, and c be the times each pump will fill the tank when working alone.
Therefore, in 1 hour;
1/a +1/b = 1/(6/5) = 5/6 ---- (1)
1/a+1/c = 1/(3/2) = 2/3 ---- (2)
1/b+1/c = 1/(2) = 1/2 ---- (3)
From equation (1)
1/a = 5/6-1/b
Substituting for 1/a in eqn (2)
5/6-1/b+1/c = 2/3
-1/b +1/c = -1/6 => 1/c = 1/b - 1/6 --- (4)
Using eqn (4) in eqn (3)
1/b+1/b-1/6 = 1/2
2/b-1/6 = 1/2
2/b =1/2+1/6 = 2/3
1/b = 1/3
Then,
1/c = 1/3 - 1/6 = 1/6
1/a = 5/6 - 1/3 = 1/2
This means, in 1 hour and with all the pumps working together, the tank will be filled to;
1/a+1/b+1/c = 1/2+1/3+1/6 = 1 (filled fully).
Therefore, it will take 1 hour to fill the tank when all pumps are working together.