The X and Y angles created by lines intersection in the pictures are 18° and 54°.
Based on the picture, angle ∠MON is a right angle hence it has an 90° angle. We then know that the ∠MOA is 72°. Because angle ∠MOA lies within the angle ∠MON, hence we can write the following formula:
∠MON = ∠MOA +∠AON = 90°
∠MON = 72° + ∠AON = 90°
∠AON = 18° ... (i)
If we focus on the line CD being intersected by the line AB, hence we can conclude that the angles form by this intersection will follow these rules:
∠AOD = ∠BOC
∠AOC = ∠BOD
∠AOD + AOC = 180°
∠BOC + ∠BOD = 180°
Based on the picture, we know that:
∠BOC = x
∠AOC = ∠MOA + ∠MOC
∠AOC = 72° + y ...(ii)
∠AOD = ∠AON + ∠NOD
∠AOD = 18° +2x
∠BOC = 3x ... (iii)
Because we already know that ∠BOC = AOD, hence we could rewrite the formula into:
∠BOC = ∠AOD
3x = 18° + 2x
x = 18° ... (iv)
To find the value of y, we need to focus on angle ∠AOC. Based on the previous calculations and formulas, we know that:
∠AOC + ∠BOC = 180° ... (v)
Input equations (ii) and (iv) into (v)
∠AOC + ∠BOC = 180°
(72° + y) + 3x = 180°
72° + y + 3(18°) = 180°
126° + y = 180°
y = 54° ... (vi)
Learn more about the angles by lines intersection here: brainly.com/question/2077876?referrer=searchResults
#SPJ1
I’ll what is this language
Answer:

Step-by-step explanation:
We have been given a function
. We are asked to find the zeros of our given function.
To find the zeros of our given function, we will equate our given function by 0 as shown below:

Now, we will factor our equation. We can see that all terms of our equation a common factor that is
.
Upon factoring out
, we will get:

Now, we will split the middle term of our equation into parts, whose sum is
and whose product is
. We know such two numbers are
.




Now, we will use zero product property to find the zeros of our given function.




Therefore, the zeros of our given function are
.
Answer:
1/2 is the closest at .5
Step-by-step explanation:
13/26 is 1/2
3/8 is . 375
11/32 is .344