1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
3 years ago
9

(b). Solve for x and verify the result: 5x + 3 = 4/3 (1+x)​

Mathematics
2 answers:
Kazeer [188]3 years ago
6 0
<h2><u>Solution :</u></h2>

{\dashrightarrow\sf{5x + 3 =  \dfrac{4}{3} \bigg(1 + x \bigg)}}

{\dashrightarrow\sf{3 \bigg(5x + 3 \bigg)=  4\bigg(1 + x \bigg)}}

{\dashrightarrow\sf{\bigg(5x \times 3 + 3 \times 3 \bigg)=  \bigg(1 \times 4 + x \times 4 \bigg)}}

{\dashrightarrow\sf{\bigg(15x +  9 \bigg)=  \bigg(4 +  4x\bigg)}}

{\dashrightarrow\sf{15x  - 4x =4 - 9 }}

{\dashrightarrow\sf{11x =4 - 9 }}

{\dashrightarrow\sf{11x = - 5 }}

{\dashrightarrow\sf{x =  -  \dfrac{5}{11}}}

\bigstar{\underline{\boxed{\sf{\red{x =  -  \dfrac{5}{11}}}}}}

<u>∴ The value of x is -5/11.</u>

\begin{gathered}\end{gathered}

<h3><u>Verification :</u></h3>

{\dashrightarrow\sf{5x + 3 =  \dfrac{4}{3} \bigg(1 + x \bigg)}}

{\dashrightarrow\sf{ \bigg(\left\{5 \times  - \dfrac{5}{11}  \right\} + 3 \bigg)=  \dfrac{4}{3} \bigg(1 +  \left\{ - \dfrac{5}{10}\right\}\bigg)}}

{\dashrightarrow\sf{ \bigg(\left\{- \dfrac{25}{11}  \right\} + 3 \bigg)=  \dfrac{4}{3} \bigg(1 +  \left\{ - \dfrac{5}{11}\right\}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{ - (  25 )+ (3 \times 11)}{11}  \bigg)=  \dfrac{4}{3} \bigg( \dfrac{(1 \times 11) - (5 \times 1)}{11}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{ - 25+ 33}{11}  \bigg)=  \dfrac{4}{3} \bigg( \dfrac{11 - 5}{11}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=  \dfrac{4}{3} \bigg( \dfrac{6}{11}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=   \bigg(\dfrac{4}{3} \times  \dfrac{6}{11}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=   \bigg(\dfrac{4 \times 6}{3 \times 11}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=   \bigg(\dfrac{24}{33}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=   \bigg(\cancel{\dfrac{24}{33}}\bigg)}}

{\dashrightarrow\sf{ \bigg( \dfrac{8}{11}  \bigg)=   \bigg({\dfrac{8}{11}}\bigg)}}

\bigstar{\underline{\boxed{\sf{\red{LHS = RHS}}}}}

<u>∴ Hence Verified !</u>

Nata [24]3 years ago
3 0

Answer:

x =  -  \frac{5}{11}  \\

Step-by-step explanation:

5x + 3 =  \frac{4}{3} (1 + x) \\ 5x + 3 =  \frac{4}{3}  +  \frac{4x}{3}  \\ 5x  -  \frac{4x}{3}  =  \frac{4}{3}  - 3 \\  \frac{3(5x) - 4x}{3}  =  \frac{4 - 3(3)}{3}  \\  \frac{15x - 4x}{3}  =  \frac{4 - 9}{3}  \\  \frac{11x}{3}  =  -  \frac{5}{3}  \\ 11x =  -  \frac{5}{3}  \times 3 \\ 11x =  - 5 \\ x =  -  \frac{5}{11}  \\

You might be interested in
Is 22 pi a whole number
Tomtit [17]

Answer:

Yes, I am pretty sure that 22 is a whole number.

3 0
3 years ago
Read 2 more answers
Help me find the media, mode and the mean look at the photo and solve the puzzle
svp [43]

Answer: See below.

Good Luck! I hope this helps!

Step-by-step explanation:

1) Find the Mean of 7  18  9  22  4.

7 + 18 + 9 + 22 + 4 = 50

50 ÷ 5 = 10

2) Find the Median of 7  18  9  22  4.

4  7  9  18  22

The Median is 9.

3) Find the Mean of 7  3  7  4  8  9  2.

7 + 3 + 7 + 4 + 8 + 9 + 2 = 40

40 ÷ 7 = 5.7

4) Find the Median of 7  3  7  4  8  9  2.

2  3  4  7  7  8  9

The Median is 7.

5) Find the Mode of 7  3  7  4  8  9  2.

Mode is the number that occurs the most.

2  3  4  7  7 8  9

The Mode is 7.

6) Find the Median of 6  10  23  24  13  9  23  12.

6  9  10  12  13  22  23  24

There are 8 numbers in this set of numbers, so the Median is the average of the two numbers in the middle. So, \frac{(12+13)}{2} = \frac{25}{2} = 12.5

The Median is 12.5.

7) Find the Mean of  6  10  23  24  13  9  23  12.

6 + 10 + 23 + 24 + 13 + 9 + 23 + 12 = 120

120 ÷ 8 = 15

The Mean is 15.

8) Find the Median of 120  113  101  101  112.

101  101  112  113  120

The Median is 112.

9) Find the Mean of 73  72  72  98  99  96  98  98  73.

73 + 72 + 72 + 98 + 99 + 96 + 98 + 98 + 73 = 779

779 ÷ 9 = 86.6.

10) Find the Mode of 73  72  72  98  99  96  98  98  73.

72  72  73  73  96  98  98  98  99

The Mode is 98.

11) Find the Mode of 6  10  23  24  22  9  23  13.

6  9  10  13  22  23  23  24

The Mode is 23.

12) Find the Median of  73  72  72  98  99  96  98  98  73.

72  72  73  73  96  98  98  98  99

The Median is 96.

13) Find the Median of 12  22  26  15  18  22  29  11  22  18.

11  12  15  18  18  22  22  22  26  29

There are 10 numbers in this set of numbers, so the Median is the average of the two numbers in the middle. So, \frac{(18+22)}{2} = \frac{40}{2} = 20

The Median is 20.

<h2>THE END!  Yay!</h2>
3 0
2 years ago
Please help! 20 points and crown!
maw [93]
The answer is:  [C]:  " 0.5 " .
________________________________________
Explanation:
________________________________________
Let us examine all the inputs ("x-values") listed that are "one unit apart"; and see what the corresponding "outputs" (that is:  the "f(x)" values) are—and how far apart the corresponding  "outputs" are.
_____________________________________________________
Refer to the table (provided within the actual question):; 
_____________________________________________________
          → And start with the beginning values for the "inputs" (or; "x-values") listed; which are in "chronological order", from:  "x = -3" to "x = 3" ; and all the "x-values" provided are "1 (one) unit apart" ;  and: "inn chronological order, from least ("x = -3") to greatest ("x = 3")" . 
_____________________________________________________
  When:  x = -3 ;  f(x) = -0.5 ; 
  
  When:  x = -2 ;  f(x)  =  0 .
_____________________________________________________
 The inputs, "-3" and "-2" , are ONE (1) unit apart.
  
      → Note:  | [-3 − (-2)] | = | (-3+2) |  = | (-1) | = " 1 " (one) unit apart.
 
 The corresponding "outputs" are "0.5 units apart" . 

   Note:  | (-0.5 − 0) |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" . 
_____________________________________________________
           Then continue, in chronological order, with the values listed on the table (provided within the actual question):
_____________________________________________________
  When:  x = -2 ;  f(x) = 0 ; 
  
  When:  x = -1 ;  f(x)  = 0.5  ;
_____________________________________________________
 The inputs, "-2" and "-1" , are ONE (1) unit apart.
   
      → Note:  | [-2 − (-1)] | = | (-2 + 1) |  = | (-1) | =  " 1 " (one) unit apart.

 The corresponding "outputs" are "0.5 units apart" ;  

   Note:  | (0 − 0.5 |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" .
_____________________________________________________
       Then continue, in chronological order, with the values listed on the table (provided within the actual question):
_____________________________________________________
  When:  x = -1 ;  f(x) = 0.5 ; 
  
  When:  x =  0 ;  f(x)  = 1  ;
_____________________________________________________
 The inputs, "-1" and "0" , are ONE (1) unit apart.
  
      → Note:  | (-1 − 0) |  =  | (-1) |  =  " 1 " (one) unit apart. 
 
The corresponding "outputs" are "0.5 units apart" ;  

   Note:  | (0.5 − 1 |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" .
_____________________________________________________
       Then continue, in chronological order, with the values listed on the table (provided within the actual question):
_____________________________________________________
  When:  x = 0;  f(x) = 1 ; 
  
  When:  x = 1 ;  f(x)  = 1.5  ;
_____________________________________________________
 The inputs, "0" and "1" , are ONE (1) unit apart.
  
      → Note:  | (0 − 1] | = | (-1) | = " 1 " (one) unit apart. 
 
The corresponding "outputs" are "0.5 units apart" ;  

   Note:  | ( 1 − 1.5) |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" .
_____________________________________________________
        Then continue, in chronological order, with the values listed on the table (provided within the actual question):
_____________________________________________________
  When:  x = 1 ;  f(x) = 1.5 ; 
  
  When:  x = 2 ;  f(x) = 2  ;
_____________________________________________________
 The inputs, "1" and "2" , are ONE (1) unit apart.
  
      → Note:  | (1 − 2)] | = | (-1) | = " 1 " (one) unit apart. 
 
The corresponding "outputs" are "0.5 units apart" .

   Note:  | (1.5 − 2 |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" .
_____________________________________________________
      Then continue, in chronological order, with the values listed on the table (provided within the actual question):
_____________________________________________________
  When:  x = 2 ;  f(x) = 2 ; 
  
  When:  x = 3 ;  f(x)  = 2.5  ;
_____________________________________________________
 The inputs, "2" and "3" , are ONE (1) unit apart.
 
    Note:   | (2 − 3) |  = | (-1) | =  " 1 " (one) unit apart.

 The corresponding "outputs" are "0.5 units apart" ;  

   Note:  | (2 − 2.5 |  = | (-0.5) | = 0.5 ;  → "0.5 units apart" .
_____________________________________________________
 So; as calculated:  The answer is that the outputs are:
_____________________________________________________
    " 0.5 " [units apart]  ;   which is:  Answer choice:  [C]:  " 0.5 " .
_____________________________________________________
4 0
4 years ago
Read 2 more answers
Precentage equivalent to 7/8
Maurinko [17]

Answer:

87.5 %

Step-by-step explanation:

Set up a ratio:

7/8 = x/100

Cross multiply to solve for x:

8x = 700

x = 87.5

6 0
3 years ago
Read 2 more answers
In the expression 7³ - 4 · 3 +8, the first operation is? A. An Exponent B. Subtraction C. Multiplication D. Addition
Vikki [24]

Answer:

An exponent

Step-by-step explanation:

look at PEM/DA/S

Parenthesis

EXPONENTS

and then you can stop the first operation is 7^3

this is an exponent

(also brainliest if this helped please!)

6 0
4 years ago
Other questions:
  • What is the number of solutions in this system?
    13·1 answer
  • The area of the figure is blank<br> square units.
    7·1 answer
  • A container holds 8 gallons of water. If 4 5 of a gallon is added to the container each hour, how many hours would it take to fi
    7·1 answer
  • Find the slope between the two points: (3,-2) and (4,7)
    8·1 answer
  • What Theorem can you use to show that the quadrilateral is a parallelogram
    8·1 answer
  • Find the percent of error if the estimate is $230 and the actual amount is $245. round to the nearest whole percent.
    15·1 answer
  • What is the scale factor of the drawing if the scale is 1 inch equals 6 feet?
    5·2 answers
  • What is the value of cose in the diagram below?
    8·1 answer
  • Can anyone answer this?
    15·2 answers
  • An architect is drawing a house with a living room measuring 18 feet in length. On the blueprint, the length of the living room
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!