1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
2 years ago
15

Find the requested angle supplement of 68.9

Mathematics
1 answer:
Minchanka [31]2 years ago
7 0
    
supplement of 68.9° = 180° - <span>68.9° =  111.1° = 111° 06'
</span>


You might be interested in
A police car leaves a crime scene heading east directly towards the hospital at 72 kilometres per hour. An ambulance leaves a qu
Vaselesa [24]

Answer:

I'm not sure what the answer is but I will tell you when I get it

8 0
3 years ago
I need help !!!!!!!!!!!!!!! For 1 and 2
11Alexandr11 [23.1K]

Answer:

#1: 5

#2: \sqrt{40}

Step-by-step explanation:

Inverse of Pythagorean Theorem:  c²-b²=a²

c²   b²      a²

13²- 12² = 25

\sqrt{25} = 5

Pythagorean Theorem: a²+b²=c²

a²    b²     c²

2² + 6² = 40

c = \sqrt{40}

5 0
3 years ago
Tell me 5 things you have learned about scientific notation.... pls
yuradex [85]

Answer: 1) If the decimal is being moved to the right, the exponent is negative. 2) It’s it’s moved to the left, the exponent is positive.

Step-by-step explanation:

fnejfkenfejdb that’s all I know that is correct.

6 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
a 25 foot tall streetlight casts a shadow 20 feet long. if melanie is standing at the end of the shadow casted by a 60 foot tall
skelet666 [1.2K]

Answer:

Melanie is 48 feet away.

Step-by-step explanation:

20% of 25 = 20

20% of 60 = 48

Hopefully it helps, if not I'm sorry...

5 0
2 years ago
Read 2 more answers
Other questions:
  • How many 2s are there in 20
    10·1 answer
  • 729 = blank to the third power
    11·1 answer
  • Mr. Smith's first test's data: 55, 42, 78, 99, 69, 83, 74, 83, 97.
    14·1 answer
  • A tackle box is a rectangular solid with sides of 15 in., 12 in., and 9 in. What is its volume?
    10·2 answers
  • You buy a bag of dog food for $12.59 and a bottle of dog shampoo for $4.75. How much did you spend at the pet store?
    7·2 answers
  • Find the probability of each compound event
    12·1 answer
  • The perimeter of a rectangular movie screen at a local cinema is 148 feet. If the length of the screen is 30 feet longer than th
    7·1 answer
  • Please help, im stuck and this is due in 10 minutes.
    7·1 answer
  • Someone help please<br><br> Find the sine of
    6·1 answer
  • Hello, please help me out and add steps if you can!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!