For a better understanding of the answer given here, please go through the diagram in the attached file.
The diagram assumes that the base of the hexagonal pyramid is an exact fit (has same dimensions as the face of the hexagonal prism).
As can be seen from the diagram, the common vertices are A,B,C,D,E,F which are 6 in number.
The bottom vertices are G,H,I,J,K,L, which, again are 6 in number.
The Apex of the pyramid, P is one more vertex.
Thus, the total number of vertices in a Hexagonal pyramid is located on top of a hexagonal prism will be the sum of all these vertices and thus will be:
6+6+1=13
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
24 ft^2
Step-by-step explanation:
The small aquarium:
1 * 3 * 2 = 6 ft^2
The large aquarium
(1 + 1) * (3 + 2) * (2 + 1)
2 * 5 * 3 = 30 ft^2
Difference between the larger aquarium and the smaller aquarium:
30 - 6, or 24.
This means that the answer to this question is a, 24 ft^2