1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
13

When x = 1/2, what is the value of 8x-3/x?

Mathematics
1 answer:
sp2606 [1]3 years ago
4 0

Answer:

Step-by-step explanation:

Putting value of x = 1/2 in the equation

8x - 3/x

8(1/2) - 3(1/2)

= 4 - 3/2

= 2.5 or 5/2

You might be interested in
Pre-Calc: Find all the zeros of the function.
uysha [10]

The zeros of the polynomial function are y = 4/5, y = -4/5 and y = ±4/5√i and the polynomial as a product of the linear factors is f(y) = (5y - 4)(5y + 4)(25y^2 + 16)

<h3>What are polynomial expressions?</h3>

Polynomial expressions are mathematical statements that are represented by variables, coefficients and operators

<h3>How to determine the zeros of the polynomial?</h3>

The polynomial equation is given as

f(y) = 625y^4 - 256

Express the terms as an exponent of 4

So, we have

f(y) = (5y)^4 - 4^4

Express the terms as an exponent of 2

So, we have

f(y) = (25y^2)^2 - 16^2

Apply the difference of two squares

So, we have

f(y) = (25y^2 - 16)(25y^2 + 16)

Apply the difference of two squares

So, we have

f(y) = (5y - 4)(5y + 4)(25y^2 + 16)

Set the equation to 0

So, we have

(5y - 4)(5y + 4)(25y^2 + 16) = 0

Expand the equation

So, we have

5y - 4 = 0, 5y + 4 = 0 and 25y^2 + 16 = 0

This gives

5y = 4, 5y = -4 and 25y^2 = -16

Solve the factors of the equation

So, we have

y = 4/5, y = -4/5 and y = ±4/5√i

Hence, the zeros of the polynomial function are y = 4/5, y = -4/5 and y = ±4/5√i

How to write the polynomial as a product of the linear factors?

In (a), we have

The polynomial equation is given as

f(y) = 625y^4 - 256

Express the terms as an exponent of 4

So, we have

f(y) = (5y)^4 - 4^4

Express the terms as an exponent of 2

So, we have

f(y) = (25y^2)^2 - 16^2

Apply the difference of two squares

So, we have

f(y) = (25y^2 - 16)(25y^2 + 16)

Apply the difference of two squares

So, we have

f(y) = (5y - 4)(5y + 4)(25y^2 + 16)

Hence, the polynomial as a product of the linear factors is f(y) = (5y - 4)(5y + 4)(25y^2 + 16)

Read more about polynomial at

brainly.com/question/17517586

#SPJ1

5 0
1 year ago
Please show your work!!
jarptica [38.1K]

Answer:OK ILL HELP

Step-by-step explanation:Combine  

1

2

and  

x

.

y

=

x

2

−

3

6 0
2 years ago
Examine this system of equations. Which numbers can be multiplied by each equation so that when the two equations are added toge
aleksklad [387]

Answer:

The first equation must be multiplied by 18 and second equation must be multiplied by 8

Step-by-step explanation:

8 0
2 years ago
Is 6.64x10-²³ greater than 6.65x10-²⁴​
hram777 [196]

Answer:

yes

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Ayuda por favor
sergeinik [125]

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>

En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)

En consecuencia, obtenemos las siguientes proporciones:

AP'/AP'' = MN/BC = 1/2     (1)

Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)}{\frac{1}{2}\cdot (2\cdot a) \cdot  h - \frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)} = \frac{\frac{1}{4}\cdot a\cdot h }{a\cdot h - \frac{1}{4}\cdot a \cdot h }

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{4} }{\frac{3}{4} } = \frac{1}{3}

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

Para aprender sobre triángulos semejantes: brainly.com/question/21730013

#SPJ1

3 0
2 years ago
Other questions:
  • The lines below are parallel if the slope of the greenline is -2what is the slope of the redline
    5·1 answer
  • A ball is rolling at 4.80m/s over level ground when it encounters a ramp, which gives it an acceleration of -0.875m/s^2. If the
    12·2 answers
  • 11. Mr Lee bought a second hand car for
    11·1 answer
  • Solve by graphing<br> y= -4x+5<br> y=3x-2
    5·1 answer
  • The regular price of a watch is $32.25. During a sale, the watch was marked 16% off. What was the price of the watch during the
    11·2 answers
  • Select the equation in which the graph of the line has a negative slope and the y-intercept equals 10.
    13·1 answer
  • How do you write 550% as a fraction, mixed number, or whole number in simplest form? submit?
    11·1 answer
  • Your plan was to be on the road by 9 A.M. but you did not leave the garage until 10 A.M. You then drove with the cruise control
    15·1 answer
  • Find the length of side AB.
    5·1 answer
  • Margo is 8 years older than her brother Dan. The sum of their ages is 56. How<br> old is Dan?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!