1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
3 years ago
12

Please helpppppppppppppppppppp

Physics
1 answer:
givi [52]3 years ago
7 0

Answer:

Explanation:

what do you really need help with

You might be interested in
A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet
lesya692 [45]

The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

The given parameters;

  • <em>Current flowing in the wire, I = 4.00 mA</em>
  • <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
  • <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
  • <em>Length of wire, L = 2.00 m</em>
  • <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>

<em />

The initial area of the copper wire;

A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2

The final area of the copper wire;

A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2

The initial drift velocity of the electrons is calculated as;

v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s

The final drift velocity of the electrons is calculated as;

v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7}  \ m/s

The change in the mean drift velocity is calculated as;

\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s

The time of motion of electrons for the initial wire diameter is calculated as;

t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s

The time of motion of electrons for the final wire diameter is calculated as;

t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s

The average acceleration of the electrons is calculated as;

a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

Learn more here: brainly.com/question/22406248

7 0
2 years ago
In comparison with other ocean basins, major sedimentary features such as continental rises and abyssal plains are relatively ra
Maksim231197 [3]

Answer:

Why are continental rises and abyssal plains relatively rare in the Pacific? This is because the extensive system of trenches along the active margins of the Pacific, trap much of the sediments flowing off the continents, preventing them from building the broad, flat abyssal plains typical of the Atlantic ocean basins.

3 0
2 years ago
A 14n force is applied for 0.33 seconds, calculate the impulse
Shalnov [3]

Answer:

4.62 N-s

Explanation:

recall that the formula for impulse is given by

Impulse = Force x change in time

in our case, we are given

Force = 14 N

change in time = 0.33s

Simply substituting the above into the equation for impulse, we get

Impulse = Force x change in time

Impulse = 14 x 0.33

= 4.62 N-s

5 0
2 years ago
Identify which best describes the energy used to pluck guitar strings to make sound.
Novay_Z [31]
<span>The correct answer is: Mechanical Energy

Explanation:
As the guitar strings are plunked, the potential energy stored in the strings has an ability to make them vibrate. When the strings are vibrating, that potential energy is actually converted to the kinetic energy. Hence, the whole phenomena contains both the kinetic energy and the potential energy. The sum of kinetic energy and the potential energy is called Mechanical energy. Therefore, the correct answer is Mechanical Energy.</span>
8 0
3 years ago
Read 2 more answers
Most of the mass of the milky way exists in the form of.
Andrews [41]

Answer: Dark matter.

Explanation: Hope it helps :)

7 0
2 years ago
Read 2 more answers
Other questions:
  • Suppose you increase your walking speed from 5m/s to 15m/s in a period of 1 s. What is your acceleration?
    5·1 answer
  • 15. The
    7·1 answer
  • Does adding electrons change the mass
    14·1 answer
  • How much force does it take to bring a 1,050 N car from rest to a velocity of 42 m/s in 13 seconds?
    14·1 answer
  • Five race cars speed toward the finish line at the Jasper County Speedway. The table lists each car’s speed in meters/second. If
    5·2 answers
  • King crimson vs DIO? for science of course. and for an essay
    15·2 answers
  • If a vehicle is traveling at constant velocity and then comes to a sudden stop, has it undergone negative acceleration or positi
    6·1 answer
  • A topographic map would best provide information about which area? O state boundaries O interstate highways O routes of minor ro
    9·2 answers
  • television set changes electrical energy to sound and light energy. In this process, some energy is *
    6·1 answer
  • What color will a yellow banana appear when illuminated by yellow light
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!