Answer:

Explanation:
We know that for circular motion the centripetal acceleration
is:

where v is the speed and r is the radius.
The centripetal acceleration for the astronaut must be the gravitational acceleration due to the gravity, as there are no other force. So
.
The radius of the orbit must be the radius of the Moon, plus the 270 km above the surface




We can obtain the speed as:






And this is the orbital speed.
Displacement/distance metres
Time seconds
Force Newtons
Energy Joules
Voltage Volts
Current intensity Amperes
Resistance Ohms
Light intensity Candella
Pressure Pascals
Charge Coulombs
Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them

For 

Dividing the above equations we get

F_n = 5.65E-11 N

d = 1.20682E-31 m
Answer:
12.6332454263 m/s
Explanation:
m = Mass of car
v = Velocity of the car
= Coefficient of static friction = 0.638
g = Acceleration due to gravity = 9.81 m/s²
r = Radius of turn = 25.5 m
When the car is on the verge of sliding we have the force equation

The speed of the car that will put it on the verge of sliding is 12.6332454263 m/s
<span>The repelling of the support magnet decreases friction. is the answer you're looking for . :)
hope i helped - beanz</span>