Answer:
Step-by-step explanation:
Since the number of pages that this new toner can print is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = the number of pages.
µ = mean
σ = standard deviation
From the information given,
µ = 2300 pages
σ = 150 pages
1)
the probability that this toner can print more than 2100 pages is expressed as
P(x > 2100) = 1 - P(x ≤ 2100)
For x = 2100,
z = (2100 - 2300)/150 = - 1.33
Looking at the normal distribution table, the probability corresponding to the z score is 0.092
P(x > 2100) = 1 - 0.092 = 0.908
2) P(x < 2200)
z = (x - µ)/σ/√n
n = 10
z = (2200 - 2300)/150/√10
z = - 100/47.43 = - 2.12
Looking at the normal distribution table, the probability corresponding to the z score is 0.017
P(x < 2200) = 0.017
3) for underperforming toners, the z score corresponding to the probability value of 3%(0.03) is
- 1.88
Therefore,
- 1.88 = (x - 2300)/150
150 × - 1.88 = x - 2300
- 288 = x - 2300
x = - 288 + 2300
x = 2018
The threshold should be
x < 2018 pages
<u>Top row - Left Row :</u>
Order : Left to Right
{11.7 - below(negative)} , {11.6 - below(negative)} , {12 - exactly filled} , {12.2 - above(positive)}
<u>Middle Row </u>:
Order : Left to Right
{11.1 - below(negative)} , {11.2 - below(negative)} , {11.9 - below(negative)} , {12.5 - above(positive)}
<u>Right Row </u>:
Order : Left to Right
{12 - exactly filled} , {11.4 - below(negative)} , {11.5 - below(negative)} , {10.8 - below(negative)}
Answer:
Step-by-step explanation:
Given that there are 3 sets such that there are 100 elements in A1, 1000 in A2, and 10,000 in A3
a) If A1 ⊆ A2 and A2 ⊆ A3
then union will contain the same number of elements as that of A3
i.e. 
b) If the sets are pairwise disjoint.
union will contain the sum of elements of each set

c) If there are two elements common to each pair of sets and one element in all three sets
We subtract common elements pairwise and add common element in 3
i.e. 
Answer:
aa
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
Let's solve the given system of equations.
<u>Given system</u>
x +3y= 10 ----(1)
-2x -2y= 4 ----(2)
From (2):
-2(x +y)= 4
Dividing both sides by -2:
x +y= -2 ----(2)
Thus, options 3 and 4 are incorrect as x +y≠ -2.
(1) -(2):
(x +3y) -(x +y)= 10 -(-2)
Expand:
x +3y -x -y= 10 +2
2y= 12
Divide both sides by 2:
y= 12 ÷2
y= 6
Substitute y= 6 into (2):
x +6= -2
x= -6 -2
x= -8
Options (1) and (2) differs only by the value of the expression of -x +y. Thus, let's find its value in the given system of equations.
-x +y
= -(-8) +6
= 8 +6
= 14
Thus, option 2 is the correct option.