Answer:
The correct answer is CHLOROPHYLL
Answer:
Release or egress
Explanation:
Virus can reproduce only within a host cell, this cycle of infection begins with the <em>attachment</em>, where the virus attaches to a specific receptor site on the host cell, after this comes the<em> entry,</em> in the case of enveloped virus, the envelope can fuse directly with the cell membrane to enter the cell, they can also enter through endocytosis. After entering the cell the virus initiates a <em>replication and assembly </em>mechanism depending on its genome, finally, the last stage of viral replication is the <em>release or egress </em>of the new virions produced in the host organism, some viruses can be released when the host cell dies, but some can leave infected cells by budding through the membrane without directly killing the cell.
I hope you find this information useful and interesting! Good luck!
Answer:
Explanation: Although cellular respiration has multiple parts, the basic chemical equation is:
Answer: Oxygen
Explanation: Oxygen + Glucose (sugar) = Carbon Dioxide + Water + Energy (ATP)
This equation is often broken into two parts, the reactants and the products. Reactants are the molecules that begin cellular respiration, in this case that would be oxygen and glucose. Products are what forms during cellular respiration. Here, the products are carbon dioxide, water, and energy. As the focus of this lesson is on the reactants of cellular respiration, oxygen and glucose, let's take a look at those.
Reactants--
The first reactant in the equation for cellular respiration is oxygen. Most people are familiar with oxygen since it's the primary gas needed for sustaining our lives. We obtain oxygen by simply breathing. Oxygen is highly reactive and therefore perfectly suited for driving chemical reactions such as cellular respiration. However, people may be less familiar with the second reactant in our respiration equation: glucose.
Im thinking C. The skeletal system but not 100% sure.
Yes, but it's not technically sperm yet.