Answer: X = 10.20240940...
Step-by-step explanation:
x(2x + 9) = 2x^2 + 9x
2x^2 + 9x = 300
- 300 ON BOTH SIDES
2x^2 + 9x - 300 = 0
SOLVE USING THE QUADRATIC FORMULA
x = -b +/- all root (b)^2 - 4(a)(c) All over 2(a)
When all the values are plugged in:
When using "+" in the equation you should get:
x = 10.20240940…
When using "-" in the equation you should get:
x = −14.70240940…
Now.. you CANNOT have a negative length, so you cross of the negative value leaving you one value for x which is 10.20240940...
YOUR ANSWER IS: x = 10.20240940...
Problem 1
<h3>Answer: B. M<3 would need to double.</h3>
Explanation: This is because angles 3 and 6 are congruent corresponding angles. Corresponding angles are congruent whenever we have parallel lines like this. If they weren't congruent, then the lines wouldn't be parallel. We would need to double angle 3 to keep up with angle 6.
=====================================================
Problem 2
<h3>Answer: D. none of these sides are parallel</h3>
Explanation: We have angles A and C that are same side interior angles, but they add to A+C = 72+72 = 144, which is not 180. The same side interior angles must add to 180 degrees for parallel lines to form. This shows AB is not parallel to CD.
A similar situation happens with angles B and D, since B+D = 108+108 = 216. This also shows AB is not parallel to CD. We can rule out choices A and C.
Choice B is false because AD is a diagonal along with BC. The diagonals of any quadrilateral are never parallel as they intersect inside the quadrilateral. Parallel lines never intersect.
The only thing left is choice D. We would say that AC || BD, since A+B = 72+108 = 180 and C+D = 72+108 = 180, but this isn't listed as an answer choice.
Answer:
The y-intercept is (0, 4)
- Since the y-intercept marks the point where x =0, all that you have to do is substitute 0 in for x in the parabola's equation.
Please Mark Brainliest If This Helped!
Answer: See the image below for the filled out table.
The other root is x = -2
===========================================================
Explanation:
The turning point is at (1, -45) which is the vertex. This is where the graph goes downhill, and then turns around to go uphill, or vice versa. Depending on the direction, the vertex is the lowest point or the highest point on the parabola.
We have (h,k) = (1,-45) as the vertex, so h = 1 and k = -45
y = a(x-h)^2 + k
y = a(x-1)^2 + (-45)
y = a(x-1)^2 - 45
Now plug in any other point from the table. You cannot pick (1,-45) or else you won't be able to solve for the variable 'a'. Let's go for (0,-40)
We'll plug x = 0 and y = -40 into the equation above to solve for 'a'
y = a(x-1)^2 - 45
-40 = a(0-1)^2 - 45
-40 = a(-1)^2 - 45
-40 = a - 45
a-45 = -40
a = -40+45
a = 5
Therefore, the equation for this parabola is
y = 5(x-1)^2 - 45
As a way to check, we can plug in something like x = -3 to find that...
y = 5(x-1)^2 - 45
y = 5(-3-1)^2 - 45
y = 5(-4)^2 - 45
y = 5(16) - 45
y = 80 - 45
y = 35
Which matches what the table shows in the first column. I'll let you verify the other columns. As you can probably guess at this point, we'll plug in the x values to get the corresponding y values.
So for x = -2, we get...
y = 5(x-1)^2 - 45
y = 5(-2-1)^2 - 45
y = 5(-3)^2 - 45
y = 5(9) - 45
y = 45 - 45
y = 0
The result of 0 here indicates we have a root at x = -2. This is the other x intercept. The x intercept already given to us was x = 4.
The rest of the table is filled out using the same idea. You should get what you see below.