1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
3 years ago
8

Write as a percentage

Mathematics
1 answer:
Julli [10]3 years ago
8 0

Answer:

100\%

Step-by-step explanation:

\frac{64}{65}  \times 100\% \\  \frac{64 \times 100}{65}  \\  \frac{6400}{65}  \\  = 98.461\% \\

When you round it to nearest tenth....

The answer is,

100\%

Hope this helps you.

Let me know if you have any other questions :-):-)

You might be interested in
Simplify: <br>{(12)^1 + (13)^-1}/[(1/5)^-2 × {(1/5)^-1 + (1/8)^-1}^-1]​
CaHeK987 [17]

Step-by-step explanation:

\underline{\underline{\sf{➤\:\:Solution}}}

\sf \dashrightarrow \:  \dfrac{ \left(\left(12 \right)^{ - 1}  + \left(13 \right)^{ - 1}  \right) }{\left( \dfrac{1}{5}\right) ^{ - 2}  \times\left( \left( \dfrac{1}{5}  \right) ^{ - 1}  +\left( \dfrac{1}{8}  \right) ^{ - 1}  \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{1}{12}  + \dfrac{1}{13} \right) }{\left( \dfrac{5}{1}\right) ^{ 2}  \times\left( \dfrac{5}{1}  + \dfrac{8}{1}   \right) ^{ - 1}}

  • LCM of 12 and 13 is 156

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{1 \times 13 = 13}{12 \times 13 = 156}  + \dfrac{1 \times 12 = 12}{13 \times 12 = 156} \right) }{\ \dfrac{25}{1} \times\left( \dfrac{5 + 8}{1}    \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{13}{156}  + \dfrac{12}{156} \right) }{\ \dfrac{25}{1} \times\left( \dfrac{13}{1}    \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{13 + 12}{156}  \right) }{\ \dfrac{25}{1} \times\dfrac{1}{13} }

\sf \dashrightarrow \:    \dfrac{25}{156} \div    \dfrac{25}{13}

\sf \dashrightarrow \:    \dfrac{ \cancel{25}}{156}  \times    \dfrac{13}{ \cancel{25} }

\sf \dashrightarrow \:     \dfrac{13}{156}

\sf \dashrightarrow \:     \dfrac{1}{12}

\sf \dashrightarrow \:    Answer =   \underline{\boxed{ \sf{ \dfrac{1}{12} }}}

━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{★\:\:Laws\:of\: Exponents :}}}

\sf \: 1^{st} \: Law = \bigg( \dfrac{m}{n} \bigg)^{a} \times \bigg( \dfrac{m}{n} \bigg)^{b} = \bigg( \dfrac{m}{n} \bigg)^{a + b}

\sf 2^{nd} \: Law =

\sf Case : (i) \: if \: a > b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \bigg( \dfrac{m}{n}\bigg)^{a - b}

\sf Case : (ii) \: if \: a < b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \dfrac{1}{\bigg( \dfrac{m}{n}\bigg)^{b - a}}

\sf \: 3^{rd} \: Law = \bigg\{ \bigg( \dfrac{m}{n} \bigg)^{a} \bigg\}^{b} = \bigg( \dfrac{m}{n} \bigg)^{a \times b} =\bigg( \dfrac{m}{n} \bigg)^{ab}

\sf \: 4^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{ - 1} = \bigg( \dfrac{n}{m} \bigg) =\dfrac{n}{m}

\sf \: 5^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{0} = 1

3 0
3 years ago
Read 2 more answers
What are the factors to a2+11a+30
LenKa [72]

Answer:

a^2+11a+30

(a+5)(a+6)

Let me know if this helps!

4 0
3 years ago
Read 2 more answers
Three forces act on a hook. Determine the magnitude of the resultant of the force.
Novay_Z [31]

Use Hooke's law... (just kidding)

Break down each force vector into horizontal and vertical components.

\vec F_1=(1000\,\mathrm N)(\cos30^\circ\,\vec x+\sin30^\circ\,\vec y)\approx(866.025\,\mathrm N)\,\vec x+(500\,\mathrm N)\,\vec y

\vec F_2=(1500\,\mathrm N)(\cos160^\circ\,\vec x+\sin160^\circ\,\vec y)\approx(-1409.54\,\mathrm N)\,\vec x+(513.03\,\mathrm N)\,\vec y

\vec F_3=(750\,\mathrm N)(\cos195^\circ\,\vec x+\sin195^\circ\,\vec y)\approx(-724.444\,\mathrm N)\,\vec x+(-194.114\,\mathrm N)\,\vec y

The resultant force is the sum of these vectors,

\vec F=\displaystyle\sum_{i=1}^3\vec F_i\approx(-1267.96\,\mathrm N)\,\vec x+(818.916\,\mathrm N)\,\vec y

and has magnitude

|\vec F|\approx\sqrt{(-1267.96\,\mathrm N)^2+(818.916\,\mathrm N)^2}\approx1509.42\,\mathrm N

The closest answer is D.

5 0
3 years ago
Darnell is underwater 20 feet below sea level. His friend is on a hill 32 feet above sea level. How far apart are the two friend
NemiM [27]

Answer:

52 feet apart

Step-by-step explanation:

20 + 32 = 52

8 0
3 years ago
Read 2 more answers
Can someone please help me with this math problem. It is rate of change.
Shalnov [3]

Answer:

Step-by-step explanation:

I think 2700miles /(4+2/3) equal 578,5

8 0
3 years ago
Other questions:
  • Which property was applied to create this equivalent expression? 7x+(5+6×)---&gt;(7x+5)+6x
    8·2 answers
  • Find the solution of the systems of equations x=8+y and x-11y= -12
    14·1 answer
  • A) 90°<br><br> B) 180°<br><br> C). 6°<br><br> D). 86°
    9·2 answers
  • What is 1 over 200 as a percent
    15·1 answer
  • Write a paragraph proof of Theorem 3-8: In a plane, if two lines are perpendicular to the same
    8·2 answers
  • HELPPPPP PLEASEEE I BEGG YOU
    11·1 answer
  • 20 POINTS. PLZ HELP!!!!!
    9·1 answer
  • Point A is located at (-4, -5). After it is translated, point A' is located at (-4, 1). What was the translation?
    11·1 answer
  • What is the volume, in cubic inches, of one cube with an edge length of inch?
    6·1 answer
  • Please help me
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!