There are microorganisms that are able to live in extreme environments under adverse conditions of pH, temperature and salinity. These microorganisms are classified as extremophiles. Within the group of extremophiles there are halophilic bacteria, which are those capable of living in extremely saline environments.
One biological factor that all living things are subject to suffer from is osmotic pressure. Halophilic microorganisms have developed mechanisms to adapt to saline environments where osmotic pressure acts with great intensity on individuals. These bacteria change the chemical composition of their membranes and also accumulate osmoprotective compounds in their cytoplasm to compensate for osmotic stress.
RAMIREZ, N; SANDOVAL, AH y SERRANO, JA. Las bacterias halófilas y sus aplicaciones biotecnológicas. Rev. Soc. Ven. Microbiol. [online]. 2004, vol.24, n.1-2 [citado 2019-09-22], pp. 12-23 . Disponible en: <http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562004000100004&lng=es&nrm=iso>. ISSN 1315-2556.
Last one - Biodiversity is the diversity of species in an area, which makes an ecosystem better prepared for major changes
Explanation:
If one crop struggles to grow then there will be plenty of others to substitute it. If a prey animal is dying at a faster rate and harder to find, predators can have other prey options and so forth. Biodiversity makes it so ecosystems can get past change.
The nucleotide sequence would have to have 900 nucleotides in order to code for a protein of 300 amino acids. When translating RNA into proteins, RNA is read 3 bases at a time. Each group of 3 bases is a codon, and each codon codes for an amino acid. When read, the proper amino acid is added to a growing chain of amino acids, which will be folded to become a protein.
Therefore, 300 amino acids * 3 nucleotides per amino acid = 900 nucleotides.
Answer:
Ion i think
Explanation:
I think ion's contain more negative energy from electrons and since it's -18 and 9+ it would be -9 if u add them up