A biased example: Asking students who are in line to buy lunch
An unbiased example: Asking students who are leaving/going to lunch(<em>NOT buying </em><em>lunch</em><em />).
But in this case, the answer choices can be... confusing.
Don't panic! You're given numbers and, of course, your use of logic.
Answer choice A: 100 students grades 6-8
Answer choice B: 20-30 students any <em>one</em> grade<em></em><em>
</em>Answer choice C: 5 students
<em></em>Answer choice D: 50 students grade 8
An unbiased example would be to choose students from <em>any grade.</em> So we can eliminate choices B and D.
Now, the question wants to <em>estimate how many people at your middle school buy lunch.</em> This includes the whole entire school, and if you are going to be asking people, you aren't just going to assume that if 5 people out of 5 people you asked bought lunch, the whole school buys lunch.
So, to eliminate all bias and/or error by prediction, answer choice A, the most number of students, is your answer.
Disagree. Even though it has no b it is still a line but a horizontal line. It will be at 7 on the y- intercept but horizontal.
Answer:
1/2
Step-by-step explanation:
Since we have two points, we can use the slope formula
m = (y2-y1)/(x2-x1)
= (22-21)/(6-4)
= 1/2
Answer:
The side closest to P is the side that is on the same side of the angle bisector as P.
Step-by-step explanation:
The angle bisector is the line containing all the points equidistant from the sides of the angle. Points on one side of the angle bisector are closer to the angle side that is on that side of the angle bisector.
___
The attached diagram shows the angle bisector as a dashed line. A couple of different locations for P are shown (P1 and P2). Apparently, we're concerned here with the distance from P along the perpendicular to each side of the angle. For P2 (on the left side of the angle bisector), it may be clear that the left perpendicular is shorter than the right one. Likewise, for P1, the right perpendicular will be shorter.