Solve for <em>x</em> when √(<em>x</em> ² - 4) = 1 :
√(<em>x</em> ² - 4) = 1
<em>x</em> ² - 4 = 1
<em>x</em> ² = 5
<em>x</em> = ±√5
We're looking at <em>x </em>≤ 0, so we take the negative square root, <em>x</em> = -√5.
This means <em>f</em> (-√5) = 1, or in terms of the inverse of <em>f</em>, we have <em>f</em> ⁻¹(1) = -√5.
Now apply the inverse function theorem:
If <em>f(a)</em> = <em>b</em>, then (<em>f</em> ⁻¹)'(<em>b</em>) = 1 / <em>f '(a)</em>.
We have
<em>f(x)</em> = √(<em>x</em> ² - 4) → <em>f '(x)</em> = <em>x</em> / √(<em>x</em> ² - 4)
So if <em>a</em> = -√5 and <em>b</em> = 1, we get
(<em>f</em> ⁻¹)'(1) = 1 / <em>f '</em> (-√5)
(<em>f</em> ⁻¹)'(1) = √((-√5)² - 4) / (-√5) = -1/√5
The sign must be negative; see the attached plot, and take note of the negatively-sloped tangent line to the inverse of <em>f</em> at <em>x</em> = 1.
Answer:
f(x)=8x-25
Step-by-step explanation:
Answer:
The 95% confidence interval of the mean time it took a person to find their dream home is between 5.64 months and 6.16 months.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 5.9 - 0.26 = 5.64 months
The upper end of the interval is the sample mean added to M. So it is 5.9 + 0.26 = 6.16 months.
The 95% confidence interval of the mean time it took a person to find their dream home is between 5.64 months and 6.16 months.