Answer
Find out the number of hours when the cost of parking at both garages will be the same.
To prove
As given
There are two parking garages in beacon falls .
As given
Let us assume that the y is representing the cost of parking at both garages will be the same.
The total number of hours is represented by the x.
First case
Garage a charges $7.00 to park for the first 2 hours ,and each additional hour costs $3.00 .
As garage charges $7.00 for the first 2 hours so the remaning hours are (x -2)
Than the equation becomes
y = 3.00 (x -2) + 7.00
written in the simple form
y = 3x - 6 +7
y = 3x + 1
Second case
Garage b charges $3.25 per hour to park.
than the equation becomes
y = 3.25x
Compare both the equations
3x +1 = 3.25x
3.25x -3x = 1
.25x = 1

x = 4hours
Therefore in the 4 hours the cost of parking at both garages will be the same.
Answer: Aproxamatly 18.999999999999999
Step-by-step explanation:
Diameter be d
Radius be r
- πr²=6767
- r²=6767/π
- r²=2155
- r=46.4cm
Diameter=2r=46.4(2)=92.8cm
Answer:
That would be sina.
Step-by-step explanation:
sin(a+b) = sinacosb + cosasinb
sin(a-b) = sinacosb - cosasinb
Adding we get sin(a+b) + sin(a-b) = 2sinaccosb
so sinacosb = 1/2sin(a+b) + sin(a-b)
Answer:
f'(x) = b
Step-by-step explanation:
f(x) = bx
f' (x) = d/dx (bx)
using d/dx ( a * x ) = a
f' (x) = b <-- solution.