I cant really show you how to graph this but i can try to explain it. you would make a 4 quadrant graph and do rise over run.
1)start by making the graph
2) on the line of the graph marked Y is where you would put -4
3) From -4, you would go up (rise) by 2 and go over to the right 1 where you end is the slop
Answer:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

Step-by-step explanation:
For this case we have the following distribution given:
X 0 1 2 3 4 5 6
P(X) 0.3 0.25 0.2 0.12 0.07 0.04 0.02
For this case we need to find first the expected value given by:

And replacing we got:

Now we can find the second moment given by:

And replacing we got:

And the variance would be given by:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

Data:
x: number of months
y: tree's height
Tipical grow: 0.22
Fifteen months into the observation, the tree was 20.5 feet tall: x=15 y=20.5ft (15,20.5)
In this case the slope (m) or rate of change is the tipical grow.
m=0.22
To find the line's slope-intercep equation you use the slope (m) and the given values of x and y (15 , 20.5) in the next formula to find the y-intercept (b):

Use the slope(m) and y-intercept (b) to write the equation:

A) This line's slope-intercept equation is: y=0.22x+17.2
B) To find the height of the tree after 29 months you substitute in the equation the x for 29 and evaluate to find the y:

Then, after 29 months the tree would be 23.58 feet in height
C) In this case as you have the height and need to find the number of moths you substitute the y for 29.96feet and solve the equation for x, as follow:

Then, after 58 months the tree would be 29.96feet tall
6:15 to 7:15 = $12 for the hour
7:15 to 7:45 Is a half hour = $6
So total $12 + $6 = $18