1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
2 years ago
12

Which is the greatest to least, 12 3/4, 12 3/5 and 12.7

Mathematics
2 answers:
maks197457 [2]2 years ago
5 0

Answer:

12.75, 12.70, 12.60

Step-by-step explanation:

12 3/4 = 12.75

12 3/5 = 12.60

12.7 = 12.70

Ne4ueva [31]2 years ago
4 0

Answer:

12 3/4, 12.7, 12/5

Step-by-step explanation:

12 3/4 = 12.75

12 3/5 = 12.6

You might be interested in
Pls help me with this
Nonamiya [84]

22  True  For all real Numbers A and B,  A  -   B   =    -B   +  A

23  True   For all real Numbers  P, Q, and R, P  -  Q  - R  =  P - R  - Q

24) True For all real Numbers  X, Y, Z and (X   +  Y )  +  Z  =  Z   +  (X  +  Y)

25) False  For all real Numbers M and N,  M/M * N = N/N ==> Example: 5/5  *  3  ≠   3/3  *  5

26) Examples:

Counterexamples =====>   5  - 0  = 5;   5/1   =  5  

5   -  3   ≠  3    -   5;   (5 -  3 )  -    2  ≠   5  -  (3   -  2 );    

6/3    ≠   3/6;   (24/6 )/2   ≠   24/ (6/ 2 )



Hope that helps!!!!                                         : )

5 0
3 years ago
HURRY ASAP WILL PICK BRAINLEST What is the value of 10 (4 minus 7) over negative (4 minus 1) ?
mariarad [96]

Answer:

10 its simple

Step-by-step explanation:

5 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
3/7h=33 ill give brainlyest if i can
loris [4]
77
step by step explanation
8 0
3 years ago
If the ordered pairs graphed are all equivalent ratios, what ordered pair is missing?
Ganezh [65]

On the graph we have points x:y of

3:5

6:10

12:20

which are all in the ratio 3:5, a slope of 5/3.

3:5=9:y

y=9×5/3 = 15

Answer: C (9,15)

5 0
3 years ago
Read 2 more answers
Other questions:
  • The lengths of two sides Of a triangle Our three and seven. What is one possible length of the third side
    9·1 answer
  • Gil has $128 in his savings account. He saves n dollars each week. Write an expression for the amount of money in his acoount in
    10·2 answers
  • A ____________ _______________ allows you to determine the expected percents of different genotypes in the offspring of two pare
    15·2 answers
  • How would you convert 5 feet 6 inches to inches
    12·2 answers
  • - In your opinion, should Cromwell have treated<br> the rebels so harshly? (Explain with evidence)
    14·1 answer
  • Max points and brainliest
    8·2 answers
  • Find y (please someone answer)
    7·1 answer
  • -x/8-11=12 <br> / means fraction
    5·2 answers
  • There are 5 times as many orange popsicles as grape popsicles in Reid's freezer. There are 12 more orange popsicles than grape p
    14·2 answers
  • Erin recycles milk bottles, soda cans, and newspapers. If the following items are in the trash bin, what percent of the items ca
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!