They stop at the same time after 4 times for the southbound bus to return and five times for the northbound bus returns to the bus stop
The equation g(x) in vertex form of a quadratic function for the transformations whose graph is a translation 4 units left and 1 unit up of the graph of f(x) is (x-4)² + 1
Given a quadratic function for the transformations given the function f(x) = x²
If the function g(x) of the graph is translated 4 units to the left, the equation becomes (x-4)² (note that we subtracted 4 from the x value
- Translating the graph 1 unit up will give the final function g(x) as (x-4)² + 1 (We added 1 since it is an upward translation.)
Hence the equation g(x) in vertex form of a quadratic function for the transformations whose graph is a translation 4 units left and 1 unit up of the graph of f(x) is (x-4)² + 1
Learn more here: brainly.com/question/15381183
Answer:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
![V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BMultiplying%20both%20sides%20by%203%2F4%20we%20get%7D%5C%5C%5C%5C%5Cfrac%7B3V%7D%7B4%7D%20%3D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BDividing%20both%20sides%20by%20%7D%20%5Cpi%20%5C%5C%5C%5C%20%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%20%3D%20r%5E%7B3%7D%5C%5C%5C%5C%5Ctext%7BTakeing%20cube%20root%20of%20both%20sides%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D%20%3D%20r)
Therefore:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
You must calculate the length of the segments.
Suppose segments AB and CD
Being A (m, n), B (p, q) C(r,s) and D(t,u)
<span>
They are congruent if:
</span>

<span>
</span>
Answer:
225 frogs
Step-by-step explanation:
Total population of frogs = 300 frogs.
Observed population of frogs = 24
6 of the 24 observed frogs had spots
Which means , the number of frogs that did not have spots = 24 - 6 = 18 frogs.
We were told to find how many of the total population can be predicted to NOT have spots. We would form a proportion.
If 24 frogs = 18 frogs with no spots
300 frogs = Y
Cross multiply
24Y = 300 × 18
Y = (300 × 18) ÷ 24
Y = 5400 ÷ 24
Y = 225 frogs.
This means out of 300 frogs, 225 frogs do not have spots.
Therefore, the total population that can be predicted to NOT have spots is 225 frogs.
the total population can be predicted to NOT have spots