<u></u>
corresponds to TR. correct option b.
<u>Step-by-step explanation:</u>
In the given parallelogram or rectangle , we have a diagonal RT . We need to find which side is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side TU:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side TU with RT.
<u>Side TR:</u>
Since, direction of sides are not mentioned here , we can say that TR & RT is parallel & equal to each other . So , TR is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side UR:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side UR with RT.
− 10/8
− 15/12
− 20/16
− 25/20
− 40/32
These are all equal, the list could go on but here are many
Answer:
Step-by-step explanation:
28=2x-9
37=2x
x=18.5
Answer:

Step-by-step explanation:
Well we can start by seeing if the parabola is the same width by comparing it to its parent function ( y = x^2 )
In y = x^2 the 2nd lowest point is just up 1 and right 1 away from the vertex.
This is not true for our parabola.
So we can widen it by to the desidered width by making the x^2 into a .5x^2.
So far we’ve got y = .5x^2
Now the parabola y intercept is at -5.
So we can add a -5 into the equation making it.
y = .5x^2 - 5
Now for the x value.
So we can find the x value by seeing how far away the parabola is from from the y axis.
So the x value is -2x.
So the full equation is 
Look at the image below to compare.