h(t)=(t+3) 2 +5 h, left parenthesis, t, right parenthesis, equals, left parenthesis, t, plus, 3, right parenthesis, squared, plu
lesya692 [45]
Answer:
1
Step-by-step explanation:
If I understand the question right, G(t) = -((t-1)^2) + 5 and we want to solve for the average rate of change over the interval −4 ≤ t ≤ 5.
A function for the rate of change of G(t) is given by G'(t).
G'(t) = d/dt(-((t-1)^2) + 5). We solve this by using the chain rule.
d/dt(-((t-1)^2) + 5) = d/dt(-((t-1)^2)) + d/dt(5) = -2(t-1)*d/dt(t-`1) + 0 = (-2t + 2)*1 = -2t + 2
G'(t) = -2t + 2
This is a linear equation, and the average value of a linear equation f(x) over a range can be found by (f(min) + f(max))/2.
So the average value of G'(t) over −4 ≤ t ≤ 5 is given by ((-2(-4) + 2) + (-2(5) + 2))/2 = ((8 + 2) + (-10 + 2))/2 = (10 - 8)/2 = 2/2 = 1
Click to let others know, how helpful is it
Answer:
The current that produces maximum power is 3A
Step-by-step explanation:
Given

Required [Missing from the question]
The current that produces maximum power
First, we represent the function in standard form


Open bracket


The maximum value of c is:

Where:

By comparison: 



So, we have:




Do what is in the parentheses then add
Either B and D. Both seem pretty random lol
Answer:
C) Between 9 and 13
Step-by-step explanation:
If 40% is 5 gallons, then 20% is 2.5 gallons
If you multiply both by 5, you get 12.5, which is between 9 and 13
Sorry for my weird way of math