Is there a picture so I can help
<h3>Angles sum up to:</h3><h3>( n - 2 ) × 180 = ( 5 - 2 ) × 180 = 3 × 180 = 540</h3>
![x + 4x + 4x + 135 + 135 = 540](https://tex.z-dn.net/?f=x%20%2B%204x%20%2B%204x%20%2B%20135%20%2B%20135%20%3D%20540)
![9x + 270 = 540](https://tex.z-dn.net/?f=9x%20%2B%20270%20%3D%20540)
![9x = 540 - 270 \\ 9x = 270](https://tex.z-dn.net/?f=9x%20%3D%20540%20-%20270%20%5C%5C%209x%20%3D%20270)
![x = \frac{270}{9} = 30](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B270%7D%7B9%7D%20%20%3D%2030)
Answer:
x = 3z(y - 2)
Step-by-step explanation:
Given
= y - 2 ( multiply both sides by 3z to clear the fraction )
x = 3z(y - 2)
With
![\vec r(t)=4t\,\vec\imath+6t\,\vec\jmath-t^2\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20r%28t%29%3D4t%5C%2C%5Cvec%5Cimath%2B6t%5C%2C%5Cvec%5Cjmath-t%5E2%5C%2C%5Cvec%20k)
we have
![\mathrm d\vec r=(4\,\vec\imath+6\,\vec\jmath-2t\,\vec k)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cmathrm%20d%5Cvec%20r%3D%284%5C%2C%5Cvec%5Cimath%2B6%5C%2C%5Cvec%5Cjmath-2t%5C%2C%5Cvec%20k%29%5C%2C%5Cmathrm%20dt)
The vector field evaluated over this parameterization is
![\vec f(x,y,z)=\vec f(x(t),y(t),z(t))=4t\,\vec\imath+t^2\,\vec\jmath+6t\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20f%28x%2Cy%2Cz%29%3D%5Cvec%20f%28x%28t%29%2Cy%28t%29%2Cz%28t%29%29%3D4t%5C%2C%5Cvec%5Cimath%2Bt%5E2%5C%2C%5Cvec%5Cjmath%2B6t%5C%2C%5Cvec%20k)
so the line integral is
![\displaystyle\int_{-1}^1(4t\,\vec\imath+t^2\,\vec\jmath+6t\,\vec k)\cdot(4\,\vec\imath+6\,\vec\jmath-2t\,\vec k)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B-1%7D%5E1%284t%5C%2C%5Cvec%5Cimath%2Bt%5E2%5C%2C%5Cvec%5Cjmath%2B6t%5C%2C%5Cvec%20k%29%5Ccdot%284%5C%2C%5Cvec%5Cimath%2B6%5C%2C%5Cvec%5Cjmath-2t%5C%2C%5Cvec%20k%29%5C%2C%5Cmathrm%20dt)
![=\displaystyle\int_{-1}^1(16t+6t^2-12t^2)\,\mathrm dt=-4](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_%7B-1%7D%5E1%2816t%2B6t%5E2-12t%5E2%29%5C%2C%5Cmathrm%20dt%3D-4)
Accepted properties, laws, and definitions