There is no image or choices so what exactly do you want us to answer.
What?? what are you trying to say please be more specific
Answer:
The humble sunflower appears not quite of this earth. Its yellow crowned head sits atop its stalk like a green broomstick. Its seeds, arranged in a logarithmic spiral, are produced by tiny flowers called disc florets that emerge from the center of its head and radiate outward. But aside from being a biological marvel, the sunflower is also often in the scientific spotlight.
From understanding how new plant species emerge to studying “solar tracking,” which is how the flowers align themselves with the sun’s position in the sky, sunflowers are a darling in the field of science. However, researchers can only get so far in understanding a plant without detailed genetic knowledge. And after close to a decade, it has finally unfurled itself.An international consortium of 59 researchers who set their sights on the laborious task of sequencing and assembling the sunflower’s genome published their results in a 2017 study in Nature. This achievement will provide a genetic basis for understanding how the sunflower responds and adapts to different environments. “We are on the cusp of understanding sunflower adaptability,” says Loren Rieseberg, a leading sunflower expert at the University of British Columbia and a supervisor of this study.
With its genome assembled, scientists are hopeful for the next phase of the sunflower’s scientific career: as a “model crop” for studying climate adaptability in plants. This task is more complex and urgent now than ever. Climate change, according to a paper in the Annals of Botany, “will influence all aspects of plant biology over the coming decades,” posing a threat to crops and wild plants alike.
Answer:
Reading graphs: The variable plotted on the x-axis is year while the two variables plotted on y-axis are both wolves and moose.
Interpreting variables: The population of moose rose from 800 to 1550 between 1965-1972 while the population of wolves rose from 24 to 43 between 1973-1976.
inferring: The change in population of moose might cause a change in wolves population as a result of the feeding pattern of wolves, perhaps the contest between them was affected by availability of another prey which allows the predator (wolves) to feed on another prey, hence increasing the population of moose.
Conclusion: The dip in population of moose between 1974 and 1981 could be attributed to voracious feeding pattern the predator (wolves) had on the prey (moose) which inturns allows the dip in population during the above mentioned years.
Predicting: If there is a disease infection in wolves, then there would be an increase in the population of moose the next year as a result of disruption in the predator-prey contest, hence; allows one to be more populated the following year.
Explanation:
From the above assertions, it could be deduced that only when the feeding pattern of the predator (wolves) changes then the population of the prey would either be reduced or increased.
<span>Teleromes provide a protective cap on the ends of linear chromosomes and are atypical to most prokaryotes, which are circular chromosomes. Teleromes also function as the gatekeepers to prevent topoisomerase enzymes from sliding out of the dna double-helix.</span>