Answer:
Translation is the second part of the central dogma of molecular biology: RNA → Protein. It is the process in which the genetic code in mRNA is read to make a protein. Translation is illustrated in the diagram below. After mRNA leaves the nucleus, it moves to a ribosome, which consists of rRNA and proteins.
Explanation:
Within the ribosome, the rRNA molecules direct the catalytic steps of protein synthesis — the stitching together of amino acids to make a protein molecule. In fact, rRNA is sometimes called a ribozyme or catalytic RNA to reflect this function.
False
reason -
Gene testing is not full proof as there are possibilities of discrepancies in it based on the testing procedures used and the condition of sample. Since we human beings have the same genomic structure there are chances that our DNA may match with other people who do not share a heredity with our family. Basically statistical probability is used to determine probability of paternity, relationship of any kind etc. among two individuals . usually A 99% or higher percentage of probability is considered conclusive. and thus it gene testing can not be considered as full proof
The immune system protects your child's body from outside invaders, such as bacteria, viruses, fungi, and toxins (chemicals produced by microbes). It is made up of different organs, cells, and proteins that work together.
Anatomy of the immune system
There are two main parts of the immune system:
The innate immune system, which you are born with.
The adaptive immune system, which you develop when your body is exposed to microbes or chemicals released by microbes.
These two immune systems work together.
The innate immune system
This is your child's rapid response system. It patrols your child’s body and is the first to respond when it finds an invader. The innate immune system is inherited and is active from the moment your child is born. When this system recognizes an invader, it goes into action immediately. The cells of this immune system surround and engulf the invader. The invader is killed inside the immune system cells. These cells are called phagocytes.
The acquired immune system
The acquired immune system, with help from the innate system, produces cells (antibodies) to protect your body from a specific invader. These antibodies are developed by cells called B lymphocytes after the body has been exposed to the invader. The antibodies stay in your child's body. It can take several days for antibodies to develop. But after the first exposure, the immune system will recognize the invader and defend against it. The acquired immune system changes throughout your child's life. Immunizations train your child's immune system to make antibodies to protect him or her from harmful diseases.
The cells of both parts of the immune system are made in various organs of the body, including:
Adenoids. Two glands located at the back of the nasal passage.
Bone marrow. The soft, spongy tissue found in bone cavities.
Lymph nodes. Small organs shaped like beans, which are located throughout the body and connect via the lymphatic vessels.
Lymphatic vessels. A network of channels throughout the body that carries lymphocytes to the lymphoid organs and bloodstream.
Peyer's patches. Lymphoid tissue in the small intestine.
Spleen. A fist-sized organ located in the abdominal cavity.
Thymus. Two lobes that join in front of the trachea behind the breastbone.
Tonsils. Two oval masses in the back of the throat.
How do antibiotics help fight infections?
Antibiotics can be used to help your child's immune system fight infections by bacteria. However, antibiotics don’t work for infections caused by viruses. Antibiotics were developed to kill or disable specific bacteria. That means that an antibiotic that works for a skin infection may not work to cure diarrhea caused by bacteria. Using antibiotics for viral infections or using the wrong antibiotic to treat a bacterial infection can help bacteria become resistant to the antibiotic so it won't work as well in the future. It is important that antibiotics are taken as prescribed and for the right amount of time. If antibiotics are stopped early, the bacteria may develop a resistance to the antibiotics and the infection may come back again.
Note: Most colds and acute bronchitis infections will not respond to antibiotics. You can help decrease the spread of more aggressive bacteria by not asking your child’s healthcare provider for antibiotics in these
Answer:
Frequency of B allele is 0.6681
Explanation:
If p represents the frequency of dominant allele and q represents the frequency of recessive allele, according to Hardy-Weinberg equilibrium:
p + q = 1
p² + 2pq + q² = 1
where p² = frequency of homozygous dominant genotype
q² = frequency of homozygous recessive genotype
2pq = frequency of heterozygous genotype
Given that number of recessive chestnut horse = 28
Total horses = 226 + 28 = 254
frequency of b² genotype = 28/254 = 0.1102
frequency of recessive b allele = √0.1102 = 0.3319
So, frequency of B allele =
1 - 0.3319 = 0.6681
Hence frequency of B allele is 0.6681
Answer:
a. biomes
Explanation:
Ecology can be defined as the scientific study of the relationship between living organisms such as plants and animals in relation to their physical and biological environment.
An ecosystem can be defined as the natural living habitats of both living and non-living organisms, in which they interact with one another. Essential services such as plant pollination, water purification, nutrient cycling etc that are being provided by the ecosystem are really very vital, important and useful for the sustenance of life, both for humans and enhances social welfare.
Generally, the different continents on Earth are in a constant motion due to the fact that they're sitted on top of gigantic plates floating on Earth’s mantle.
Furthermore, the Earth’s core generate energy which also creates convection currents in the molten layer of the Earth, thereby, moving the plates.
Over an extremely long periods of time, the movement of these plates create new biomes.
In Ecology, a biome can be defined as a relatively distinct terrestrial region which is made up of animals, micrograms and plants, and it is typically characterized by similar environmental factors such as wind, relative humidity, rainfall, temperature, etc., irrespective (regardless) of where it occurs in the world.
There are five (5) main types of biomes and these are;
I. Forest.
II. Aquatic.
III. Desert.
IV. Grassland.
V. Tundra.