<span>2/3 and 24/36 and 6/9
for 2/3 just dvide by 6, 24/36 just multiply both terms by 2 and for 6/9 just divide by 2</span>
Answer:
Y = 3x^x is a graph that has exponential growth while y = 3^-x has exponential decay.
Y = 3x^x (-∞, 0) and (∞, ∞).
Y = 3x^-x (-∞, ∞) and (∞, 0).
Step-by-step explanation:
The infinity symbols were being used to represent the x and y values of each graph. I will call y = 3^x "graph 1" and y = 3^-x "graph 2".
When graph 1 had positive ∞ for its x value, its y value was reaching towards positive ∞. When its x was reaching for negative ∞, its y was going for 0.
For graph 2, however, when its x was reaching for positive ∞, its x was reaching for 0. When its x was reaching for negative ∞, its y was going for positive ∞.
Here's an image of the graphs:
Answer: A) .1587
Step-by-step explanation:
Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.
i.e.
and 
Let x denotes the amount of soda in any can.
Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.
Then, the probability that a randomly selected can will need to go through the mentioned process = probability that a randomly selected can has more than 12.50 ounces of soda poured into it =
![P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587](https://tex.z-dn.net/?f=P%28x%3E12.50%29%3D1-P%28x%5Cleq12.50%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B12.50-12.30%7D%7B0.20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1%29%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.8413%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%5C%5C%5C%3D0.1587)
Hence, the required probability= A) 0.1587
Answer:
Step-by-step explanation:
you need to show the answers