To find that you first need to find what 9% is. You can multiply the number, 2,860 by .09 to find out your answer. That should be equal to 257.40. Since you now have that number, you can multiply it by 36. 257.40 is your average per month and you want to know by 3 years. So then your next step is 257.4*36 (there is 36 months in 3 years) which should be equal to 9,266.40.
Well that would be 8 apples in 4 bags so there’s 6
answer: 6
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.
<u>Differentiate using the Quotient Rule</u> –

![\pink{\twoheadrightarrow \sf \dfrac{d}{dx} \bigg[\dfrac{f(x)}{g(x)} \bigg]= \dfrac{ g(x)\:\dfrac{d}{dx}\bigg[f(x)\bigg] -f(x)\dfrac{d}{dx}\:\bigg[g(x)\bigg]}{g(x)^2}}\\](https://tex.z-dn.net/?f=%5Cpink%7B%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%5Cdfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5Cbigg%5D%3D%20%5Cdfrac%7B%20g%28x%29%5C%3A%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5Bf%28x%29%5Cbigg%5D%20-f%28x%29%5Cdfrac%7Bd%7D%7Bdx%7D%5C%3A%5Cbigg%5Bg%28x%29%5Cbigg%5D%7D%7Bg%28x%29%5E2%7D%7D%5C%5C)
According to the given question, we have –
- f(x) = x^3+5x+2
- g(x) = x^2-1
Let's solve it!

![\green{\twoheadrightarrow \bf \dfrac{d}{dx}\bigg[ \dfrac{x^3+5x+2 }{x^2-1}\bigg]} \\](https://tex.z-dn.net/?f=%5Cgreen%7B%5Ctwoheadrightarrow%20%5Cbf%20%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5B%20%5Cdfrac%7Bx%5E3%2B5x%2B2%20%7D%7Bx%5E2-1%7D%5Cbigg%5D%7D%20%5C%5C)














From least to greatest. in this order 115/11 10.5624 115