Answer:
The velocity of the shell when the cannon is unbolted is 500.14 m/s
Explanation:
Given;
mass of cannon, m₁ = 6430 kg
mass of shell, m₂ = 73.8-kg
initial velocity of the shell, u₂ = 503 m/s
Initial kinetic energy of the shell; when the cannon is rigidly bolted to the earth.
K.E = ¹/₂mv²
K.E = ¹/₂ (73.8)(503)²
K.E = 9336032.1 J
When the cannon is unbolted from the earth, we apply the principle of conservation of linear momentum and kinetic energy
change in initial momentum = change in momentum after
0 = m₁u₁ - m₂u₂
m₁v₁ = m₂v₂
where;
v₁ is the final velocity of cannon
v₂ is the final velocity of shell

Apply the principle of conservation kinetic energy

Therefore, the velocity of the shell when the cannon is unbolted is 500.14 m/s
Answer:
normal force = 10 N
Explanation:
Given data
frictional force = 0.400 N
coefficient of kinetic friction = 0.04
Solution
we get here normal force that is express as
normal force =
............1
put here value and we will get value
normal force =
solve it we get
normal force = 10 N
It creates friction on the forward moving object, causing it to loose momentum, until finally, it stops.
Hope this helps!
Answer:
The increase in gravitational potential energy is the same in both cases
Explanation:
It is easier to climb a mountain in a zigzag way rather than climbing on a straight line but since the distance is the same ( vertical height ) , mass and gravity is the same. Hence the increase in gravitational potential energy is the same in both cases.
gravitational potential energy = mgh ( same in both cases )
m = mass
g = acceleration due to gravity
h = distance ( vertical height )
Answer:
Answer is overcrowding aka answer choice A. I got the question and got it right. Please mark brainliest. Have a good day! :)
Explanation: