Answer:
The moon Phobos orbits Mars
(mass = 6.42 x 1023 kg) at a distance
of 9.38 x 106 m. What is its period of
orbit?
Explanation:
Answer: 27.9816 x 10^3 is the period of orbit
Answer: Got It!
<em>Explanation: </em>let s = speed at launch
v = 0 at top = s sin 63 - g t
so at top
t = s sin 63/g = .0909 s
h = 13.6 = s sin 63 t - 4.9 t^2
13.6 = .081s^2 - .0405 s^2
s^2 = 336
s = 18.3 m/s
0 0
The speed of the ball moving is

what is momentum?
The momentum p of a classical object of mass m and velocity v is given by pclassical =mv.
For photons with wavelength λ,this equation does not hold.Instead, the momentum of the Photon is given by p Photon = h/λ
where,h is the planck's constant.
The momentum of the red Photon is
given:




since,the Photon and the ping-pong ball have the same momentum,we have



Therefore, if the red photon and the ping-pong ball have the same momentum, the ping-pong ball must have a speed of approximately

learn more about momentum of photon from here: brainly.com/question/28197406
#SPJ4
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Given:
1st run: 20 meters North
2nd run: 15 meters East
time: 15 seconds
Average speed = total distance covered / total time taken
Ave. Speed = (20m + 15m) / 15s
Ave. Speed = 35m / 15s
Ave. Speed = 2 1/3 meters per second